K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2015

trong 3 số tự nhiên liên tiếp sẽ có 1 số chẵn nên :

=> tích của 3 số tự nhiên liên tiếp chia hết cho 2 (1)

trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3 nên:

=> tích của 3 số tự nhiên liên tiếp chi a hết cho 3 (2)

từ (1) và (2) ta có :

tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 6 vì 6 = 2 . 3

18 tháng 4 2015

Gọi số đó là A

Trong 3 số tự nhiên liên tiếp luôn có nhiều hơn hoặc bằng 2 số chẵn=>A chia hết cho 2 (1)

Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3=>A chia hết cho 3 (2)

Từ (1)(2) mà 3.2=6=>A chia hết cho 6(đpcm)

14 tháng 9 2021

n(n+1)(n+2)
Với n=2k
2k(2k+1)(2k+2) chia hết 2
Với n=2k+1
(2k+1)(2k+2)(2k+3)=(2k+1).2(k+1)(2k+3) chia hết 2
=> n(n+1)(n+2) chia hết 2 (1)
Với n=3k
3k(3k+1)(3k+2) chia hết 3 
Với n=3k+1
(3k+1)(3k+2).3(k+1) chia hết cho 3
Với n=3k+2
(3k+2)(3k+3)(3k+4) chia hết 3
=> n(n+1)(n+2) chia hết cho 3 (2)
(1);(2)=> n(n+1)(n+2) chia hết 6

14 tháng 9 2021

TL:

Gọi 3 số tự nhiên liên tiếp là a;a+1 và a+2

Tích 3 số đó là:  a(a+1)(a+2)= a+a+a+1+2

                                         = 3a+ 3

Vì 3a chia hết cho3; 3 chia hết cho 3 nên 3a+3 chia hết cho 3

=>  a(a+1)(a+2) chia hết cho 3

- Nếu a chẵn thì a(a+1)(a+2) chia hết cho 2

-Nếu a lẻ thì a+1 chia hết cho 2=> a(a+1)(a+2)

    Vậy a(a+1)(a+2) chia hết cho 2

Mặt khác (2,3)=1 nên a(a+1)(a+2) chia hết cho 6

HT!~!

2 tháng 8 2023

a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2

Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)

b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3

Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)

 

2 tháng 8 2023

c, Hai số tự nhiên liên tiếp là k và k+1

Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2

Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2

(ĐPCM)

d, Ba số tự nhiên liên tiếp là m;m+1 và m+2

Tích chúng: m(m+1)(m+2) 

+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3

=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)

 

27 tháng 1 2017

Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2.

Ta có:(a+a+1+a+2)=3a+3

Mà 3a chia hết cho 3

3 chia hết cho 3

Suy ra 3a+3 chia hết cho 3

27 tháng 1 2017

vì 3 số có trung bình cộng chia được cho 3 nên phải chia được cho 3

Chứng minh rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3

Đặt 3 số tự nhiên liên tiếp là: n, n+1, n+2

Giả sử n⋮ 3 thì thỏa mãn đề bài

Giả sử n chia 3 dư 1 thì n=3k+1 ⇒ n+2=3k+3⋮ 3 ⇒ thỏa mãn đề bài

Giả sử n chia 3 dư 2 thì n=3k+2 ⇒ n+1=3k+3⋮ 3 ⇒ thỏa mãn đề bài

Vậy trong 3 số tự nhiên liên tiếp thì luô có 1 số chi hết cho 3

11 tháng 10 2021

ta có : tông 3 số tự nhiên liên tiếp là :

a+a+1+a+2= 3a+3 

vì 3 chia hết cho (chc) 3 mà một số tự nhiên nhân với bất kì số nào cũng chia hết cho chính no

=> 3a chc 3 

=> 3a+3 chc 3

Vậy 3 số tự nhiên liên tiếp luôn chc 3

13 tháng 7 2016

a/Gọi 3 số tn liên tiếp là a , a+1 , a+2

Ta có A=a.(a+1).(a+2)

Chứng minh A chia hết cho 2: Chỉ có hai trường hợp

+Nếu a=2k =>A chia hết cho 2

+Nếu a=2k+1 =>a+1=2k+1+1= 2(k+1) =>A chia hết cho 2

Chứng minh A chia hêt cho 3: Chỉ có ba trường hợp

+Nếu a=3k =>A chia hết cho 3

+Nếu a=3k+1 =>a+2=3k+1+2=3k+3=3(k+1) =>A chia hết cho 3

+Nếu a=3k+2 =>a+1=3k+2+1=3k+3=3(k+1) =>A chia hết cho 3

vì A chia hết cho cả 2 và 3

mà ƯCLN(2,3)=1

vậy A chia hết cho 6

bài b bạn làm tương tự

13 tháng 7 2016

1./ Gọi tích của 3 số tự nhiên liên tiếp là: A = n*(n+1)(n-1)

Trong 3 số tự nhiên liên tiếp thì:

  • Có ít nhất 1 số chẵn: => A chia hết cho 2
  • Có 1 số chia hết cho 3 => A chia hết cho 3.

A chia hết cho cả 2 và 3 mà U(2;3) = 1 => A chia hết cho 2x3 = 6. đpcm

2./ Tương tự, gọi tích B = a*(a + 1)*(2a + 1)

  • a và a+1 là 2 số tự nhiên liên tiếp nên sẽ có 1 số chẵn => B chia hết cho 2.
  • Nếu a hoặc a+1 chia hết cho 3 thì B chia hết cho 3.
  • Bếu a và a+1 không chia hết cho 3 thì từ kết quả câu 1./ số tự nhiên tiếp theo: a+2 sẽ chia hết cho 3 hay 2a + 4 chia hết cho 3 hay 2a + 1 + 3 chia hết cho 3 => 2a + 1 chia hết cho 3 => B chia hết cho 3.

Như vậy, bất kỳ số tự nhiên a nào thì B cũng chia hết cho cả 2 và 3 => b chia hết cho 6.