Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:
a + a + 1 + a + 2 = 3a + 3
Mà 3a \(⋮3;3⋮3\)
=> 3a + 3 \(⋮3\)
Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3
b,
Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư
a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2
Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2
c,
Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:
a[a + 1]
*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2
* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2
Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2
d,
Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:
a[a+1][a+2]
* cm a[a+1][a+2] chia hết cho 2
** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
Vậy a[a+1][a+2] chia hết cho 2
* cm a[a+1][a+2] chia hết cho 3
Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2
** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
Vậy a[a+1][a+2] chia hết cho 3
Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3
e,
2 + 22 + 23 + 24 + ... + 260
= 2[1 + 2 + 22 + 23 + 24 + ... + 260] \(⋮2\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]
= 14 + 24.14 +... + 256.14
= 7 . 2[1 + 24 + ... + 256] \(⋮7\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 5.6 + 25.5.6 + ... + 255.5.6
= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 15.2 + 25.15.2 + ... + 255.15.2
= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)
Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15
g,
102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]
= 999.....9999 [2004 chữ số 9]
Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]
=> 102005 - 1 chia hết cho 9
Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]
=> 102005 - 1 chia hết cho 3
Vậy 102005 - 1 chia hết cho 3 và 9
h,
Ta có:
102005 + 2 = 102005 - 1 + 3
Mà 102005 - 1 chia hết cho 3 [chứng minh trên]
Lại có: 3 chia hết cho 3
=> 102005 + 2 chia hết cho 3
Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:
1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9
Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]
Gọi 5 số tự nhiên liên tiếp là \(a;a+1;a+2;a+3;a+4\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)luôn luôn chia hết cho 5 (cái này bn tự chứng minh) (*)
Và nó cúng chia hết cho 6 do :
\(a\left(a+1\right)\)luôn luôn chia hết cho 2 (do 2 số tự nhiên liên tiếp lun chia hết cho 2) \(\left(1\right)\)
\(a\left(a+1\right)\left(a+2\right)\)luôn luôn chia hết cho 3 (so 3 só tự nhiên liên típ lun chia hết cho 3) \(\left(2\right)\)
Mà \(ƯCLN\left(2;3\right)=1\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\) tích trên chia hết cho \(2.3=6\) (*)
Mà 5,6 nguyên tố cùng nhau
Từ (*) + (**) = > tích trên chia hết cho \(5.6=30\)
Gọi số đầu tiên là a, ta có các số tiếp theo là : a + 1; a + 2; a + 3; a + 4.
→ Trong 5 số tự nhiên này luôn tồn tại một số chia hết cho 2 và 3 → tích đó chia hết cho : 2 . 3 = 6
→ Trong 5 số tự nhiên này luôn tồn tại một số chia hết cho 5 → tích đó chia hết cho 5
→ Tích đó chia hết cho : 5 . 6 = 30 → ĐPCM
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E \(☺\)
Thảo Nguyễn
Trong 5 số tự nhiên liến tiếp chắc chắn có 1 số chia hết cho 2 (1)
Trong 5 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3 (2)
Và trong 5 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 5 (3)
TỪ (1) ; (2) và (3)=> Tích 5 số tự nhiên liên tiếp chia hết cho 2 x 3 x 5=30
VD:1x2x3x4x5=120
Thì 120 chia hết cho 30
Vậy kết luận tích 5 số tự nhiên liên tiếp luôn luôn chia hết cho 30
nguyễn trung hiếu:Giải thích như cậu thì bọn lớp 4 nó cũng làm đc
Có 1 số chia hết cho 2
Có 1 số chia hết cho 3
Có 1 số chia hết cho 5
Vì UCLN(2;3;5) = 1
< = > Tích của chúng chia hết cho 2.3.5 = 30 (đpcm)
Số đó chia hết cho 2 ;3 và 5
Vì ƯCLN(2;3;5)=1
tích chúng chia hết cho cả 2;3;5=30
suy ra ĐPCM
trong 3 số tự nhiên liên tiếp sẽ có 1 số chẵn nên :
=> tích của 3 số tự nhiên liên tiếp chia hết cho 2 (1)
trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3 nên:
=> tích của 3 số tự nhiên liên tiếp chi a hết cho 3 (2)
từ (1) và (2) ta có :
tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 6 vì 6 = 2 . 3
Gọi số đó là A
Trong 3 số tự nhiên liên tiếp luôn có nhiều hơn hoặc bằng 2 số chẵn=>A chia hết cho 2 (1)
Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3=>A chia hết cho 3 (2)
Từ (1)(2) mà 3.2=6=>A chia hết cho 6(đpcm)
ọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8