K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

không cần đk là a,b,c là số thực cũng được @@

Sử dụng bất đẳng thức phụ \(x^2+y^2\ge2xy\)

chứng minh : \(x^2+y^2\ge2xy< =>\left(x-y\right)^2\ge0\)*đúng*

Áp dụng vào bài toán ta được :

\(2.LHS\ge ab+bc+ca+ab+bc+ca=2\left(ab+bc+ca\right)\)

\(< =>LHS\ge ab+bc+ca\)

Dấu = xảy ra \(< =>a=b=c\)

4 tháng 5 2019

tam giác đều nhé bn

4 tháng 5 2019

Ta có a2+b2+c2 = 36r2 
= 36
Áp dụng bất đẳng thức côsi cho ba số ta có :(p-a)(p-b)(p-c) 
Suy ra a2+b2+c2
a2+b2+c2 
a-b)2+(b-c)2+(c-a)2 0 a=b=c
Vậy tam giác ABC là tam giác đều .

19 tháng 2 2016

15/25

 

21 tháng 2 2016

Lấy M là trung điểm của CD

\(AC^2-AD^2=BC^2-BD^2\)

<=> \(\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\left(\overrightarrow{AC}+\overrightarrow{AD}\right)=\left(\overrightarrow{BC}-\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

<=> \(2.\overrightarrow{DC}.\overrightarrow{AM}=2.\overrightarrow{DC}.\overrightarrow{BM}\)

<=> \(2.\overrightarrow{DC}.\left(\overrightarrow{AM}-\overrightarrow{BM}\right)=0\)

<=> \(2.\overrightarrow{DC}.\overrightarrow{AB}=0\)

<=> DC vuông góc với AB

21 tháng 2 2016

1/Tìm x biết: (1/2x-1004)^2008 = (1/2x-1004)^2006 
2/Cho tam giác ABC cân tại A. D là 1 điểm nằm trong tam giác, biết góc ADB > góc ADC. Chứng minh: DB<DC
giúp e với

1 tháng 5 2018

\(\dfrac{\tan A}{\tan B}=\dfrac{\sin A}{\cos A}.\dfrac{\cos B}{\sin B}=\dfrac{\dfrac{a.\sin B}{b}\left(\dfrac{a^2+c^2-b^2}{2ac}\right)}{\dfrac{b^2+c^2-a^2}{2bc}.\sin B}=\dfrac{\dfrac{\sin B.\left(a^2+c^2-b^2\right)}{2bc}}{\dfrac{\sin B.\left(b^2+c^2-a^2\right)}{2bc}}=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}\)

NV
29 tháng 5 2020

Chà bạn ghi đề sai làm mãi không được

Đề đúng là: \(m_a^2+m_b^2+m_c^2=3\sqrt{3}S\)

Thay công thức trung tuyến vào ta được:

\(\Leftrightarrow\frac{3}{4}\left(a^2+b^2+c^2\right)=3\sqrt{3}S\Leftrightarrow a^2+b^2+c^2=4\sqrt{3}S\)

Ta có:

\(VP=4\sqrt{3}\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(VP\le4\sqrt{3}.\sqrt{p\left(\frac{p-a+p-b+p-c}{3}\right)^3}=4\sqrt{3}\sqrt{p\left(\frac{3p-\left(a+b+c\right)}{3}\right)^3}=\frac{4}{3}p^2\)

\(VT\le\frac{4}{3}\left(\frac{a+b+c}{2}\right)^2=\frac{1}{3}\left(a+b+c\right)^2\le a^2+b^2+c^2=VT\)

Dấu "="xảy ra khi và chỉ khi \(a=b=c\) hay tam giác ABC đều

1 tháng 6 2020

haha, ý em là Sabc là S ,em cảm ơn

20 tháng 6 2020

ta có A+B+C = ∏∏

nên C=∏∏ -(A+B)

   nên ta có sin(A+B)=sinC , cos(A+B)=-cosC

ta có sin2A+sin2B+sin2C

      =2sin(A+B)cos(A-B) + 2 sinCcosC

      =2sinCcos(A-B)+2sinCcosC

      =2sinC ( cos(A-B) + cosC)

      =2sinC ( cos(A-B) - cos(A+B))

      =2sinC.2sinAsinB

      =4sinAsinBsinC