Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không cần đk là a,b,c là số thực cũng được @@
Sử dụng bất đẳng thức phụ \(x^2+y^2\ge2xy\)
chứng minh : \(x^2+y^2\ge2xy< =>\left(x-y\right)^2\ge0\)*đúng*
Áp dụng vào bài toán ta được :
\(2.LHS\ge ab+bc+ca+ab+bc+ca=2\left(ab+bc+ca\right)\)
\(< =>LHS\ge ab+bc+ca\)
Dấu = xảy ra \(< =>a=b=c\)
Ta có a2+b2+c2 = 36r2
= 36
Áp dụng bất đẳng thức côsi cho ba số ta có :(p-a)(p-b)(p-c)
Suy ra a2+b2+c2
a2+b2+c2
a-b)2+(b-c)2+(c-a)2 0 a=b=c
Vậy tam giác ABC là tam giác đều .
Lấy M là trung điểm của CD
\(AC^2-AD^2=BC^2-BD^2\)
<=> \(\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\left(\overrightarrow{AC}+\overrightarrow{AD}\right)=\left(\overrightarrow{BC}-\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)
<=> \(2.\overrightarrow{DC}.\overrightarrow{AM}=2.\overrightarrow{DC}.\overrightarrow{BM}\)
<=> \(2.\overrightarrow{DC}.\left(\overrightarrow{AM}-\overrightarrow{BM}\right)=0\)
<=> \(2.\overrightarrow{DC}.\overrightarrow{AB}=0\)
<=> DC vuông góc với AB
1/Tìm x biết: (1/2x-1004)^2008 = (1/2x-1004)^2006
2/Cho tam giác ABC cân tại A. D là 1 điểm nằm trong tam giác, biết góc ADB > góc ADC. Chứng minh: DB<DC
giúp e với
\(\dfrac{\tan A}{\tan B}=\dfrac{\sin A}{\cos A}.\dfrac{\cos B}{\sin B}=\dfrac{\dfrac{a.\sin B}{b}\left(\dfrac{a^2+c^2-b^2}{2ac}\right)}{\dfrac{b^2+c^2-a^2}{2bc}.\sin B}=\dfrac{\dfrac{\sin B.\left(a^2+c^2-b^2\right)}{2bc}}{\dfrac{\sin B.\left(b^2+c^2-a^2\right)}{2bc}}=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}\)
Chà bạn ghi đề sai làm mãi không được
Đề đúng là: \(m_a^2+m_b^2+m_c^2=3\sqrt{3}S\)
Thay công thức trung tuyến vào ta được:
\(\Leftrightarrow\frac{3}{4}\left(a^2+b^2+c^2\right)=3\sqrt{3}S\Leftrightarrow a^2+b^2+c^2=4\sqrt{3}S\)
Ta có:
\(VP=4\sqrt{3}\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
\(VP\le4\sqrt{3}.\sqrt{p\left(\frac{p-a+p-b+p-c}{3}\right)^3}=4\sqrt{3}\sqrt{p\left(\frac{3p-\left(a+b+c\right)}{3}\right)^3}=\frac{4}{3}p^2\)
\(VT\le\frac{4}{3}\left(\frac{a+b+c}{2}\right)^2=\frac{1}{3}\left(a+b+c\right)^2\le a^2+b^2+c^2=VT\)
Dấu "="xảy ra khi và chỉ khi \(a=b=c\) hay tam giác ABC đều
ta có A+B+C = ∏∏
nên C=∏∏ -(A+B)
nên ta có sin(A+B)=sinC , cos(A+B)=-cosC
ta có sin2A+sin2B+sin2C
=2sin(A+B)cos(A-B) + 2 sinCcosC
=2sinCcos(A-B)+2sinCcosC
=2sinC ( cos(A-B) + cosC)
=2sinC ( cos(A-B) - cos(A+B))
=2sinC.2sinAsinB
=4sinAsinBsinC