\(\sqrt{9+4\sqrt{5}}\) = 2 + \(\sqrt{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

\(VP=\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5+4\sqrt{5}+4}\)

\(=\sqrt{\sqrt{5}^2+2\sqrt{5}.2+2^2}\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\sqrt{5}+2=VT\)

12 tháng 6 2019

9-\(4\sqrt{5}=5-4\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\\ \)

=>\(\sqrt{9-4\sqrt{5}}=\left(2-\sqrt{5}\right)\)=> điều cần phải chứng minh 

Câu 8:

a)

Ta có: \(VT=\sqrt{4-2\sqrt{3}}-\sqrt{3}\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}-\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)(1)

Ta có: 3>1

\(\Leftrightarrow\sqrt{3}>\sqrt{1}\)

\(\Leftrightarrow\sqrt{3}>1\)

\(\Leftrightarrow\sqrt{3}-1>0\)

\(\Leftrightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)(2)

Từ (1) và (2) suy ra \(VT=\sqrt{3}-1-\sqrt{3}=-1=VP\)(đpcm)

b) Ta có: \(VP=\left(\sqrt{5}+2\right)^2\)

\(=\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot2+2^2\)

\(=5+4\sqrt{5}+4\)

\(=9+4\sqrt{5}=VT\)(đpcm)

c) Ta có: \(VT=\sqrt{9+4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4+2\cdot2\cdot\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2+\sqrt{5}\right|-\sqrt{5}\)

\(=2+\sqrt{5}-\sqrt{5}=2=VP\)(đpcm)

d) Ta có: \(VT=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{16+2\cdot4\cdot\sqrt{7}+7}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=\left|4+\sqrt{7}\right|-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\)

\(=4=VP\)(đpcm)

13 tháng 7 2020

em cảm ơn ạ yeu

22 tháng 8 2016

Ta có : \(x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)

\(\left(\sqrt[3]{9-4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)

\(\Leftrightarrow x^3=18+30\)

\(\Leftrightarrow x^3-3x-18x=0\)

Ta có : 

\(x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)\(\left(\sqrt[3]{9-4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)

\(\Leftrightarrow x^3=18+3x\)

\(\Leftrightarrow x^3-3x-18x=0\)

28 tháng 8 2018

a. 9+4\(\sqrt{5}\)=(\(\sqrt{5}\)​+2)2

VT: 9+4\(\sqrt{5}\)=2\(^2\)+2.2.\(\sqrt{5}\)+​​(\(\sqrt{5}\))\(^2\)=(2+\(\sqrt{5}\))\(^2\)=VP

b. \(\sqrt{23+8\sqrt{7}}\)-\(\sqrt{7}\)=4

\(\Leftrightarrow\)\(\sqrt{4^2+2.4\sqrt{7}+\left(\sqrt{7}\right)^2}\)-\(\sqrt{7}\)=4

\(\Leftrightarrow\)\(\sqrt{4+\sqrt{7}}^2\)-\(\sqrt{7}\)=4

\(\Leftrightarrow\)4+\(\sqrt{7}\)-\(\sqrt{7}\)=4

\(\Leftrightarrow\)4=4

\(\Rightarrow\)VT=VP
\(\sqrt{5}\)\(\sqrt{5}\)

28 tháng 8 2018

Cái dòng \(\sqrt{5}\)\(\sqrt{5}\) máy mình bị lỗi nên đánh thừa thông cảm nha.

25 tháng 8 2017

a) \(9+4\sqrt{5}=4+4\sqrt{5}+5=2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{5}+2\right)^2\left(ĐPCM\right)\)

21 tháng 9 2017

a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\left(đpcm\right)\)

b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(đpcm\right)\)

c)\(\left(4-\sqrt{7}\right)^2=16-8\sqrt{7}+7=23-8\sqrt{7}\left(đpcm\right)\)

d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}=4+\sqrt{7}-\sqrt{7}=4\left(đpcm\right)\)

16 tháng 7 2017

Câu a thì c/m được câu b đề yêu cầu gì thế.

a) Xét VP được :

\(\left(\sqrt{5}+2\right)^2\) sử dụng hàng đẳng thức số 1 :

\(\left(\sqrt{5}+2\right)^2=\sqrt{5}^2+2\cdot\sqrt{5}\cdot2+2^2=5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)

Vậy \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}\)

16 tháng 7 2017

a) \(\sqrt{9+4\sqrt{5}}=\left(\sqrt{5}+2\right)^2\)

Ta biến đổi vế phải :

\(VP=\left(\sqrt{5}+2\right)^2=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2\) = \(5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)

=> Ta có VT= VP <=> VP = VT

b) Thiếu đề =.= sao làm

20 tháng 7 2016

\(\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}=\sqrt{81-17}=\sqrt{64}=8\)

Vậy VT=VP

19 tháng 7 2019

\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{9^2-17}=\sqrt{64}=8\)

\(2\sqrt{2}\left(\sqrt{3}-2\right)+9+4\sqrt{2}-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9\) \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{2-2\sqrt{10}+5}+\sqrt{2}=\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{2}.\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\left|\sqrt{5}-\sqrt{2}\right|+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\) \(\sqrt{\sqrt{3}+\sqrt{2}}.\sqrt{\sqrt{3}-\sqrt{2}}=\sqrt{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}=\sqrt{3-2}=\sqrt{1}=1\) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{2}\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{5}-\sqrt{3}\right)\left[\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{4-\sqrt{15}}\right)\right]=\sqrt{2}\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{5}-\sqrt{3}\right);\left[\sqrt{2}\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{5}-\sqrt{3}\right)\right]^2=2.\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\Rightarrow\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{4}=2\left(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}>0\right)\)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0