Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P\left(1\right)=a+b+c\)
\(P\left(4\right)=16a+4b+c\)
\(P\left(9\right)=81a+9b+c\)
Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ
=> \(5a+b\)là số hữu tỉ (1)
Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ
=> \(10a+b\)là số hữu tỉ (2)
Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ
=> a là số hữu tỉ
Từ (1)=> b là số hữu tỉ
=> c là số hữu tỉ
Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.
Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$
$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)
Điều này vô lý do $y$ là số vô tỉ.
$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.
Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.
-------------------------------
Chứng minh $xy$ vô tỉ.
Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$
$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.
-------------------------------
CM $\frac{x}{y}$ vô tỉ.
Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$
$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.
Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)
p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ
a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ
=> Vô lý=> b = 0 => a = 0 => đpcm
iả sử √22 là số hữu tỉ.
Vậy có thể viết √22 dưới dạng abab với a,bϵZ,b≠0a,bϵZ,b≠0 và (a;b)=1(a;b)=1 (1)
⇒a2b2=2⇒a2=2b2⇒a2b2=2⇒a2=2b2
⇒a⇒a chẵn . Đặt a=2ka=2k (kϵZkϵZ)
⇒4k2b2=2⇒4k2=2b2⇒b2=2k2⇒4k2b2=2⇒4k2=2b2⇒b2=2k2
⇒b⇒b chẵn .
Vậy (a;b)≠1(a;b)≠1 trái với (1)
Vậy √22 là số vô tỷ.
Xin phép sửa lại đề: Chứng minh rằng \(\sqrt{2}\)là số vô tỉ.
Giải:
Giả sử \(\sqrt{2}\)là số vô tỉ.
Khi đó ta có: \(\sqrt{2}=\frac{m}{n}\) \(m;n=1\)
\(\Rightarrow2=\frac{m^2}{n^2}\)
\(\Rightarrow2n^2=m^2\)
\(\Rightarrow m⋮n\) \(2;1=1\)
\(\Rightarrow\)Điều giả sử vô lý
\(\Rightarrow\sqrt{2}\)là số vô tỉ
\(\sqrt{4}=2\)
Mà 2 thuộc tập hợp Z . Tất cả số nằm trong N , Z và một số phân số khác đều thuộc Q
=> 2 thuộc Q
=> 2 là số hữu tỉ ( vì Q là tập hợp số hữu tỉ )
Ta có: \(\sqrt{4}\)=\(\sqrt{2^2}\)=2
Do đó: 2 \(\in\)Q nên \(\sqrt{4}\) là 1 số hữu tỉ