Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vế trái BPT là A.
Xét biểu thức tổng quát:
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{\left[n\left(n+1\right)\right]^2}}\\ =\frac{\sqrt{n^2\left(n^2+2n+1\right)+n^2+2n+1+n^2}}{n\left(n+1\right)}\\ =\frac{\sqrt{n^4+2n^3+3n^2+2n+1}}{n\left(n+1\right)}\\ =\frac{\sqrt{\left(n^2+n+1\right)^2}}{n\left(n+1\right)}\\ =\frac{n^2+n+1}{n\left(n+1\right)}\\ =\frac{n\left(n+1\right)+n+1-n}{n\left(n+1\right)}\\ =1+\frac{1}{n}-\frac{1}{n+1}\)
Suy ra:
\(A=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+1+...+1\right)+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\right)\) (2018 số hạng 1)
\(=2018+\frac{1}{2}-\frac{1}{2018}< 2018\)
Vậy \(A< 2018\left(đpcm\right)\).
Chúc bạn học tốt nha.
cảm ơn bạn nhé, mình đag ko bt cách chứng minh biểu thức tổng quát ;)
Câu b đề sai nha, bây giờ đặt \(a=\sqrt{2017},b=\sqrt{2018}\)
Ta có \(\frac{a^2}{b}+\frac{b^2}{a}< a+b\Leftrightarrow ab\left(\frac{a^2}{b}+\frac{b^2}{a}\right)< ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3< ab\left(a+b\right)\)(1)
Mà \(ab\left(a+b\right)\le\left(a^2-ab+b^2\right)\left(a+b\right)=a^3+b^3\)(2)
Từ (1), (2) => Sai
a) Ta có:
\(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{k+1-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)
Cho k=1,2,....,n rồi cộng từng vế ta có:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)\)\(+\left(\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}\right)+....+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n-1}}< 2\)
\(\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)\)
Với n thuộc N*, ta có:
\(\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{2\left(n+1-n-1\right)}{n\left(n+1\right)}}\)\)
\(\(=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2.1.\frac{1}{n}-2.1.\frac{1}{n+1}-2.\frac{1}{n}.\frac{1}{\left(n+1\right)}}\)\)
\(\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n-1}\right)^2}=1+\frac{1}{n}-\frac{1}{n-1}\)\). Áp dụng vô bài, ta có:
\(\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)\)
\(\(=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)\)
\(\(=2016+\frac{1}{2}-\frac{1}{2018}=2016\frac{504}{1009}\)\)
P/s: Lại là thằng quỷ Thắng
Xét số hạng tổng quát
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=1^2+\left(\frac{1}{k}\right)^2+\left(\frac{1}{k+1}\right)^2+2.1.\frac{1}{k}-2.\left(\frac{1}{k}.\frac{1}{k+1}\right)-2.1.\frac{1}{k+1}\)
\(=\left(1+\frac{1}{k}-\frac{1}{k+1}\right)^2\)
( Vì \(\frac{1}{k}-\frac{1}{k\left(k+1\right)}-\frac{1}{k+1}=\frac{k+1-1-k}{k\left(k+1\right)}=0\) )
Vậy thì \(\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=1+\frac{1}{k}-\frac{1}{k+1}\)
Vậy \(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)
\(=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)
\(=2016+\frac{1}{2}-\frac{1}{2018}=2016\frac{504}{1009}\)
\(=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{4}-\sqrt{3}\right)}+...+\frac{\sqrt{2018}-\sqrt{2017}}{\left(\sqrt{2017}+\sqrt{2018}\right)\left(\sqrt{2018}-\sqrt{2017}\right)}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{2018}-\sqrt{2017}}{2018-2017}\)
\(=\frac{\sqrt{2}-1}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{3}}{1}+...+\frac{\sqrt{2018}-\sqrt{2017}}{1}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2018}-\sqrt{2017}=\sqrt{2018}-1\)
\(=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
\(=-\sqrt{1}+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2018}\)
\(=-\left(\sqrt{1}+\sqrt{2018}\right)\)
Nếu theo như biểu thức bạn cho thì 2 số hạng đầu không liên quan đến nhau, 1 bên là số lớn trong căn, 1 bên là số nhỏ trong căn, vì thế phải sửa lại
Rút gọn biểu thức
\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2017}+\sqrt{2018}}.\)
Bây giờ chúng ta chứng minh bài toán phụ sau:
Chứng minh:
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Vậy bài toán phụ đã được chứng minh
Áp dụng bài toán phụ vào biểu thức A (mình tạm gọi là A cho tiện) ta được:
\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2018}-\sqrt{2017}\)
\(=\sqrt{2018}\)
Vậy, A = căn 2018