Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
1b.
Cach 1
Ta co:
\(M=\frac{x^2-2x+2015}{x^2}\)
\(\Leftrightarrow\left(M-1\right)x^2+2x-2015=0\)
Xet \(M=1\)suy ra:\(x=\frac{2015}{2}\)
Xet \(M\ne1\)
\(\Leftrightarrow\Delta^`\ge0\)
\(1+\left(M-1\right).2015\ge0\)
\(\Leftrightarrow2015M-2014\ge0\)
\(\Leftrightarrow M\ge\frac{2014}{2015}\)
Dau '=' xay ra khi \(x=-\frac{1}{M-1}\Leftrightarrow x=2015\)
Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)
Cach 2
\(M=\frac{x^2-2x+2015}{x^2}=\frac{2014x^2+\left(x-2015\right)^2}{2015x^2}=\frac{2014}{2015}+\frac{\left(x-2015\right)^2}{2015x^2}\ge\frac{2014}{2015}\)
Dau '=' xay ra khi \(x=2015\)
Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)
d) Để \(\dfrac{x^2-59}{x+8}\) nguyên \(\Leftrightarrow x^2-59⋮x+8\)
\(\Rightarrow\left(x^2-64\right)+5⋮x+8\)
\(\Rightarrow\left(x^2-8^2\right)+5⋮x+8\)
\(\Rightarrow\left(x-8\right)\left(x+8\right)+5⋮x+8\)
\(\Rightarrow5⋮x+8\)
\(\Rightarrow x+8\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow x\in\left\{-9;-7;-13;-3\right\}\)
Vậy \(x\in\left\{-9;-7;-13;-3\right\}\) thì \(\dfrac{x^2-59}{x+8}\in Z\)