Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
Gọi số chính phương cần tìm là \(\overline{abcd}\left(0\le b,c,d\le9;1\le a\le9;a,b,c,d\inℕ\right)\)
Ta dễ có: \(1000\le\overline{abcd}\le9999\Rightarrow\sqrt{1000}\le\sqrt{\overline{abcd}}\le\sqrt{9999}\Rightarrow32\le\sqrt{\overline{abcd}}\le99\)suy ra căn bậc hai của số \(\overline{abcd}\)là số tự nhiên có hai chữ số.
Đặt \(\sqrt{\overline{abcd}}=\overline{mn}\left(m,n\inℕ;0\le n\le9;3\le m\le9\right)\)
Theo đề thì chữ số hàng đơn vị của số cần tìm là số nguyên tố nên \(d\in\left\{2;3;5;7\right\}\)mà số chính phương không có tận cùng bằng \(\left\{2;3;7\right\}\)nên d = 5 do đó n = 5 (Vì số chính phương có tận cùng bằng 5 thì căn bậc hai của nó cũng tận cùng bằng 5)
Lúc này ta được: \(\sqrt{\overline{abc5}}=\overline{m5}\)
Ta có đánh giá quen thuộc rằng số chính phương chia 3 thì hoặc dư 0 hoặc dư 1 do đó \(m+5\)chia 3 dư 0 hoặc dư 1 (theo đề thì căn bậc hai của số cần tìm có tổng các chữ số là số chính phương)
Xét từng trường hợp thì \(\overline{m5}\in\left\{45;55;75;85\right\}\)nhưng chỉ có số 45 có tổng các chữ số là số chính phương (9) nên ta chọn số 45\(\Rightarrow\overline{abcd}=45^2=2025\)
Vậy số chính phương có 4 chữ số cần tìm là 2025
a) Nếu tổng các chữ số của một số \(A\) nào đó bằng 2004, thì vì 2004 chia hết cho 3 nên \(A\) cũng chia hết cho 3 (dấu hiệu nhận biết). Phản chứng, nếu \(A\) là số chính phương thì \(A\) chia hết cho 9, do đó tổng các chữ số của nó cũng phải chia hết cho 9 (dấu hiệu nb). Suy ra 2004 chia hết cho 9, vô lí. Vậy \(A\) không là số chính phương.
b) Nếu tổng các chữ số của \(A\) là 2006 thì do 2006 chia 3 dư 2 nên \(A\) cũng chia 3 dư 2. Mà số chính phương chia 3 dư là 0,1. Suy ra \(A\) không thể là số cp.
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )