\(\frac{a^2\sin B\sin C}{2\sin\left(B+C\right)}\)123
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

tam giác ABC có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R\)

=>\(\left(\frac{a}{sinA}\right)^2=\frac{b}{sinB}\times\frac{c}{sinC}=>a^2.sinB.sinC=sin^2A.b.c\)

=>\(\frac{1}{2}bcsinA=\frac{a^2.sinB.sinC}{2sinA}=>S=\frac{a^2sinB.sinC}{2sin\left(B+C\right)}\)

11 tháng 5 2017

Câu a hạ bậc rồi áp dụng cosa + cosb

Câu b thì mối liên hệ giữa tan với cot là ra

NV
28 tháng 4 2020

Mẫn Li

Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)

Câu 2b sửa lại thì cm dễ thôi:

\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)

\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)

\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)

\(=cot^2a.cot^2b-1\)

(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))

28 tháng 4 2020

Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:

\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)

Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!

NV
11 tháng 5 2020

\(A+B+C=180^0\Rightarrow\frac{A+B}{2}+\frac{C}{2}=90^0\)

\(\Rightarrow sin\left(\frac{A+B}{2}\right)=cos\left(90^0-\frac{A+B}{2}\right)=cos\frac{C}{2}\)

\(cos\left(A+B\right)=-cos\left(180^0-\left(A+B\right)\right)=-cosC\)

\(cos\left(\frac{A+B}{2}\right)=sin\left(90-\frac{A+B}{2}\right)=sin\frac{C}{2}\)

\(sinA=sin\left(180^0-A\right)=sin\left(B+C\right)\)

\(sin\left(A+B\right)=sin\left(180^0-\left(A+B\right)\right)=sinC\)

\(cosA=-cos\left(180^0-A\right)=-cos\left(B+C\right)\)

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

Lời giải:
\(\sin (a+b)=\sin (a+b+c-c)=\sin (a+b+c).\cos c-\cos (a+b+c)\sin c\)

\(\sin (a+c)=\sin (a+c+b-b)=\sin (a+b+c)\cos b-\cos (a+b+c)\sin b\)

Do đó:

\(\text{VT}=\sin (a+b+c)\cos b\cos c-\cos (a+b+c)\sin c\cos b-\sin (a+b+c)\cos b\cos c+\cos (a+b+c)\sin b\cos c\)

\(=\sin (a+b+c)(\cos b\cos c-\cos b\cos c)+\cos (a+b+c)(\sin b\cos c-\sin c\cos b)\)

\(=\cos (a+b+c)(\sin b\cos c-\cos b\sin c)=\cos (a+b+c)\sin (b-c)\)

\(=\text{VP}\)

Ta có đpcm.

NV
21 tháng 5 2020

\(\frac{cos\left(a-b\right)}{sin\left(a+b\right)}=\frac{cosa.cosb+sina.sinb}{sina.cosb+cosa.sinb}=\frac{\frac{cosa.cosb}{sina.sinb}+1}{\frac{sina.cosb}{sina.sinb}+\frac{cosa.sinb}{sina.sinb}}=\frac{cota.cotb+1}{cota+cotb}\)

Bạn ghi đề ko đúng

\(sin\left(a+b\right)sin\left(a-b\right)=\frac{1}{2}\left[cos2b-cos2a\right]\)

\(=\frac{1}{2}\left[1-2sin^2b-1+2sin^2a\right]\)

\(=sin^2a-sin^2b\)

\(=1-cos^2a-1+cos^2b=cos^2b-cos^2a\)

Câu này bạn cũng ghi đề ko đúng

\(cos\left(a+b\right)cos\left(a-b\right)=\frac{1}{2}\left[cos2a+cos2b\right]\)

\(=\frac{1}{2}\left[2cos^2a-1+1-2sin^2b\right]=cos^2a-sin^2b\)

\(=1-sin^2a-1+cos^2b=cos^2b-sin^2a\)

NV
14 tháng 4 2019

a/

\(\frac{1}{sinx}+\frac{cosx}{sinx}=\frac{1+cosx}{sinx}=\frac{1+2cos^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}=cot\frac{x}{2}\)

b/

\(\frac{1-cosx}{sinx}=\frac{1-\left(1-2sin^2\frac{x}{2}\right)}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=tan\frac{x}{2}\)

c/

\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\left(\frac{1-cosx}{sinx}\right)\left(\frac{1}{cosx}+1\right)=\frac{\left(1-cosx\right)\left(1+cosx\right)}{sinx.cosx}=\frac{1-cos^2x}{sinx.cosx}\)

\(=\frac{sin^2x}{sinx.cosx}=\frac{sinx}{cosx}=tanx\)

d/

\(\frac{sin2a}{2cosa\left(1+cosa\right)}=\frac{2sina.cosa}{2cosa\left(1+2cos^2\frac{a}{2}-1\right)}=\frac{sina}{2cos^2\frac{a}{2}}=\frac{2sin\frac{a}{2}cos\frac{a}{2}}{2cos^2\frac{a}{2}}=tan\frac{a}{2}\)

e/

\(cotx+tan\frac{x}{2}=\frac{cosx}{sin}+\frac{1-cosx}{sinx}=\frac{cosx+1-cosx}{sinx}=\frac{1}{sinx}\)

Các câu c, e đều sử dụng kết quả từ câu b

NV
14 tháng 4 2019

f/

\(3-4cos2x+cos4x=3-4cos2x+2cos^22x-1\)

\(=2cos^22x-4cos2x+2=2\left(cos^22x-2cos2x+1\right)\)

\(=2\left(cos2x-1\right)^2=2\left(1-2sin^2x-1\right)^2\)

\(=2.\left(-2sin^2x\right)^2=8sin^4x\)

g/

\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)

h/

\(sinx+cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}+cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

i/

\(sinx-cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}-cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

j/

\(cosx-sinx=\sqrt{2}\left(cosx.\frac{\sqrt{2}}{2}-sinx\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

NV
17 tháng 4 2019

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

30 tháng 4 2019

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là