K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Bài giải

Ta có: S = 3 + 32 + 33 +...+ 37 + 38 + 39 

=> S = (3 + 32 + 33) +...+ (37 + 38 + 39)

=> S = 1.(3 + 32 + 33) +...+ (36.3 + 36.32 + 36.33)

=> S = 1.(3 + 32 + 33) +...+ 36.(3 + 32 + 33)

=> S = (3 + 32 + 33).(1 + 33 + 36)

=> S = 39.(1 + 33 + 36\(⋮\)-39

Vậy S \(⋮\)-39

30 tháng 3 2020

*)S=2+22+23+24+.....+28

Vì các số hạng của S chia hết chia hết cho 2

*) S=2+22+23+24+.....+28

=> S=(2+22)+(23+24)+.....+(27+28)

=> S=2(1+2)+23(1+2)+....+27(1+2)

=> S=2.3+23.3+.....+27.3

=> S=3(2+23+....+27)

=> S chia hết cho 3

Ta có 2 và 3 là 2 số nguyên tố cùng nhau => S chia hết cho 2.3=6

=> S chia hết cho -6 (đpcm)

30 tháng 3 2020

\(S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\)

 \(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+2^7\left(1+2\right)\)

\(=2.3+2^3.3+2^5.6+2^7.3\)

\(=6+2^2.6+2^4.6+2^6.6⋮6\)

Vậy \(S⋮6\)

\(#hoktot\)

22 tháng 12 2017

a) 2+22+23+24+25+26+27+28+29+210

= (2+22)+(23+24)+(25+26)+(27+28)+(29+210)

= 2(1+2)+23(1+2)+25(1+2)+27(1+2)+29(1+2)

= 2.3+23.3+25.3+27.3+29.3

= 3(2+23+25+27+29) chia hết cho 3

b) (n+3)(n+6)

TH1: nếu n là số chẵn thì ta luôn có n+6 cũng là 1 số chẵn  (chẵn +chẵn = chẵn) nên chia hết cho 2

suy ra tích : (n+3)(n+6) chia hết cho 2 vì có 1 thừa số chia hết cho 2

TH2: nếu n là số lẻ  thì ta luôn có n+3 cũng là 1 số chẵn  (lẻ  + lẻ = chẵn) nên chia hết cho 2

suy ra tích : (n+3)(n+6) chia hết cho 2 vì có 1 thừa số chia hết cho 2

19 tháng 12 2015

S=(1+2)+(22+23)+.....+(26+27)

S=   3   +22(1+2)+....+26(1+2)

S=   3   +22.3+.....+26.3

S=   3(1+22+.....+26)chia hết cho 3

Tick mình đầu tiên nha

20 tháng 11 2018

a, 11 + 112 + 113 + ... + 11+ 118

= (11 + 112) + (113 + 114) + ... + (117 + 118)

= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)

= 11.12 + 113.12 + .... + 117.12

= 12(11 + 113 + ... + 117) chia hết cho 12

b, 7 + 7+ 73 + 74

= (7 + 73) + (72 + 74)

= 7(1 + 72) + 72(1 + 72)

= 7.50 + 72.50

= 50(7  + 72) chia hết cho 50

c, 3 + 32 + 33 + 34 + 35 + 36

= (3 + 32 + 33) + (34 + 35 + 36)

= 3(1 + 3 + 32) + 34(1 + 3 + 32)

= 3.13 + 34.13

= 13(3 + 34) chia hết cho 13

7 tháng 1 2016

S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8

S=(2+2^2)+(2^3+2^4)+(2^5+2^6)+(2^7+2^8)

S=6+2^2(2+2^2)+2^4(2+2^2)+2^6(2+2^2)

S=6+2^2.6+2^4.6+2^6.6

S=6(1+2^2+2^4+2^6)=>S chia hết cho -6

S=2+22+23+24+25+26+27+28=(2+22)+22(2+22)+24(2+22)+26(2+22)

S=6+4x6+16x6+64x6

Vì 6 chia hết 6 nên 4x6 chia hết 6 ,16x6 chia hết 6, 64x6 chia hết 6

nên 6+4x6+16x6+64x6 chia hết 6

Vậy 2+22+23+24+25+26+27+28 chia hết cho 6

2 tháng 9 2019

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

2 tháng 9 2019

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)