Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S=1.2+2.3+3.4+...+n.(n+1) với n thuộc N*. Chứng minh rằng 3S+ n.(n+1).(n2-2) là số chính phương.
Lời giải:
$3S=1.2(3-0)+2.3.(4-1)+3.4(5-2)+...+n(n+1)[(n+2)-(n-1)]$
$=[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]$
$=n(n+1)(n+2)$
$\Rightarrow 3S+n(n+1)(n^2-2)=n(n+1)(n+2)+n(n+1)(n^2-2)$
$=n(n+1)(n+2+n^2-2)=n(n+1)(n^2+n)=n(n+1)n(n+1)=[n(n+1)]^2$ là số chính phương.
tbc của 3 số là 96. tổng của stn và sth là 148. tbc của số thứ 1 và số thứ 3 là 75. tìm ba số
A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100
A= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - ...... - 1/100
A = 1/1 - 1/100
A= 100/100 - 1/100
A= 99/100
A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - ....... - 1/100
A= 1/1 - 1/100
A = 100 / 100 - 1/100
A= 99/100
Theo dạng tổng quát , ta có : 3S = n.( n + 1 ).( n + 2 )
Mà n.( n + 1 ).( n + 2 ) là h 3 số tự nhiên liên tiếp
=> 3S là h 3 số tự nhiên liên tiếp ( đpcm )
Đk: n khác 0, n khác -1
\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}\)
Vì \(0< \dfrac{1}{n+1}< 1\) (n khác 0, n khác -1) nên \(0< 1-\dfrac{1}{n+1}< 1\)
hay 0<S<1
Vậy S không là stn