Chứng minh rằng: S= 3 + 32 + 33 + 34...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)

30 tháng 6 2023

S = 3 + 32 + 33 + 34 + 35 + 3+ 37 + 38 + 39

S = ( 3 + 32 + 33 ) +3+ 35 + 36 + 37 + 38 + 3

S = 39 + 34 + 35 + 36 + 37 + 38 + 39

Vì 39 ⋮ -39

<=> S ⋮ -39

3 tháng 9 2017

Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7  . (-1)9 . (-1)11 . (-1)13

= (-1)(-1).(-1).(-1).(-1).(-1) 

= (-1)6

= 1

b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)

= 0 

Bài 2 : 

Đặt A = 1+ 2+ 3+ ... + 10= 385

=> 22(1+ 2+ 3+ ... + 102) = 22.385

=> 22 + 42 + 62 + ..... + 202 = 4.385

=> 22 + 42 + 62 + ..... + 202 = 1540

Vậy 22 + 42 + 62 + ..... + 202 = 1540

4 tháng 1 2018

bài 3:

a) 2S=2+22+23+24+...+251

    2S-S=251-1

mà 251-1<251

Suy ra:s<251

22 tháng 8 2015

=3^n.9+3^n.3+2^n.8+2^n.4

=3^n[9+3]+2^n[8+4]

=3^n.12+2^n.12chia hết cho 6[vị 12 chia hết cho 6]

b,=12^8.9^12

=2^16.3^8.3^24

=2+16.3^32

18^16=2^16.3^32

suy ra bằng nhau

22 tháng 8 2015

\(12^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}==2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)

13 tháng 10 2019

a,7^4 x (7^2 + 7 - 1 ) = 7^4 x ( 49 + 7 - 1 ) = 7^4 x  55    chia het cho 55

13 tháng 10 2019

b,  hình như bạn ghi đè sai thì phải , nếu đúng thì chia hết cho 11= (3^4)^7 - (3^3)^9 + 3^29 = 3^28 - 3^27  + 3^29 =  3^27 x ( 3 - 1 + 3^2 ) =  3^27 x( 3 -1 + 9 )= 3^27 x 11

11 tháng 9 2019

Chứng minh \(S=3+3^2+...+3^{100}⋮120\)

Ta có \(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=120+...+3^{96}.120⋮120\)

Vậy \(S=3+3^2+...+3^{100}⋮120\)

Chứng minh \(P=36^{36}-9^{10}⋮45\)

Cái này dùng đồng dư thức

\(P=36^{36}-9^{10}\equiv1-4^{10}\equiv1-16^5\equiv1-10\equiv0\left(mod5\right)\)

Mà dễ thấy P chia hết cho 9 và \(\left(9;5\right)=1\)

Vậy P chia hết cho 45

Chứng minh \(M=7^{1000}-3^{1000}⋮10\)

Ta có \(M=7^{1000}-3^{1000}=\left(2401\right)^{250}-\left(81\right)^{250}\equiv1-1\equiv0\left(mod10\right)\)

Vậy M chia hết cho 10

3 tháng 4 2015

b, = 2162   x 354 x224 x 372 x 210 chia hết cho 2189 x 3126

cứ thế nhân vô với nhau là xong

25 tháng 8 2020

P = \(2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^5\cdot3\) 

\(=2^{12}\cdot3^5-2^{12}\cdot3^5\cdot3\) 

\(=2^{12}\cdot3^5\left(1-3\right)\) 

\(=2^{12}\cdot-2\cdot3^5\) 

\(=-2^{13}\cdot3^5\) 

b) 

\(=2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^6\) 

\(=2^{12}\cdot3^6+2^{12}\cdot3^6\)      

\(=2\cdot2^{12}\cdot3^6\)                        

\(=2^{13}\cdot3^6\)