Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A=2+22+23+...+220
=>2A=2(2+22+23+...+220)
2A=4+23+24+...+221
=>2A-A=(4+23+24+...+221)-(2+22+23+...+220)
A=221-2
A= 2.( 2+ 2+ 3+ 4+ 5+ 6+ 7+8 +9 + 10= 11+ 12+ 13+ 14+15+ 16+ 17+ 18+ 19+ 20)
A=2.211
A= 422
B= 5.(1+ 5+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+..........+30)
B= 5. 470
B= 2350
Lời giải:
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)
Dễ thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(....\)
\(\dfrac{1}{10^2}=\dfrac{1}{10.10}< \dfrac{1}{9.10}\)
\(\Rightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{10}\)
\(\Rightarrow S< 2-\dfrac{1}{10}\)
\(\Rightarrow S< 2\)
đề cần chứng minh nhỏ hơn 1 hay 11
nếu 1 thì
\(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{100^2}\)
\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.......+\frac{1}{99\cdot100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrowđcm\)
nếu nhỏ hơn 11 thì làm như thế thêm câu
vì đẳng thức trên <1<11
=>đcm
2S = 2+2^2+.....+2^100
2S-S=(2-2)+(2^2-2^2)+......+2^100-1
S=2^100-1
A = S + 1 = 2^100 - 1 + 1 = 2^100
Vậy A là 1 lũy thừa của 2 (đpcm)
1/ a) \(x^2-x-1⋮x-1\)
=>\(x.\left(x-1\right)-1⋮x-1\)
=>\(-1⋮x-1\)(vì x.(x-1)\(⋮\)x-1)
=>x-1\(\inƯ\left(-1\right)\)
Đến đay tự làm
b/c/d/e/ tương tự
S=1+2+2^2+2^3+...+2^59
S=(1+2)+(2^2+2^3)+...+(2^58+2^59)
S=3+2^2(1+2)+...+2^58.(1+2)
S=3+2^2.3+...+2^58.3
S= 3.( 1+2^2+...+2^58) chia hết cho 3
S=1+2+2^2+2^3+...+2^59
S=(1+2+2^2)+(2^3+2^4+2^5)+...+(2^57+2^58+2^59)
S=7.2^3(1+2+2^2)+....+2^57(1+2+2^2)
S=7+2^3.7+...+2^57.7
S=7.(1+2^3+...+2^57) chia hết cho 7
S= 1+2+2^2+2^3+...+2^59
S=(1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+...+(2^56+2^57+2^58+2^59)
S=15+2^4(1+2+2^2+2^3)+...+2^56(1+2+2^2+2^3)
S=15+2^4.15+...+2^56.15
S=15(1+2^4+...+2^56) chia hết cho 15
chắc chắn đúng tick cho mình nhé!
\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(2S-S=1-\frac{1}{2^{20}}\)
\(S=1-\frac{1}{2^{20}}< 1\)-> ĐPCM.