![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(2S-S=1-\frac{1}{2^{20}}\)
\(S=1-\frac{1}{2^{20}}< 1\)-> ĐPCM.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}.\)
\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(\Rightarrow2A-A=1-\frac{1}{2^9}\)
\(A=1-\frac{1}{2^9}\)
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)
Dễ thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(....\)
\(\dfrac{1}{10^2}=\dfrac{1}{10.10}< \dfrac{1}{9.10}\)
\(\Rightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{10}\)
\(\Rightarrow S< 2-\dfrac{1}{10}\)
\(\Rightarrow S< 2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
S=1+3+3^2+3^3+3^4+...+3^2009
=(1+3)+(3^2+3^3)+...+(3^2008+3^2009)
=4+3^2(1+3)+...+3^2008(1+3)
=4(1+3^2+...+3^2008) chia hết cho 4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{20}}\)
2S = \(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{19}}\)
=> 2S - S = \(1-\frac{1}{2^{19}}\)
=> S = \(1-\frac{1}{2^{19}}<1\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Gọi d là ước chung của tử và mẫu
=> 12n + 1 chia hết cho d 60n + 5 chia hết cho d
=>
30n +2 chia hết cho d 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1 => ( đpcm )
Câu a) làm rồi mình làm câu b) nhé
\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)