\(Q=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

   3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3A-A=\(1-\frac{1}{3^{99}}\)

   2A=\(1-\frac{1}{3^{99}}\)

vì 2A<1

=> A<\(\frac{1}{2}\)

22 tháng 8 2016

anh làm cho e câu a nữa được không ạ

 

16 tháng 6 2017

Ta có : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+.....+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{3!}+......+\frac{100-1}{100!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+.......+\frac{100}{100!}+\frac{1}{100!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+.....+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

17 tháng 12 2017

\(Q=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3Q=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3Q-Q=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\)

\(2Q=1-\frac{1}{3^{100}}< 1\)

\(\Rightarrow Q=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1}{2}\)

V
15 tháng 12 2018

ơ tỉ tỉ toán lớp mấy dợ

27 tháng 3 2020

Câu hỏi của Ngô Văn Nam - Toán lớp 6 - Học toán với OnlineMath

hihi

27 tháng 3 2020

Tú Nhân bạn có hiểu ko giải thích cho mình với!

1 tháng 11 2018

Ta có  4A=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

Trừ 4A cho A ta được 

3A = \(1-\frac{1}{2^{100}}\)=> 3A <1 => A<1/3 (đpcm)

Chúc bạn học tốt 

1 tháng 11 2018

Ta có :\(A=\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

\(2A=\frac{1}{2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{100}}\)

Lại có :

\(\frac{1}{3}=\frac{1}{2}-\frac{1}{6}\)

Vì \(\frac{1}{2^{100}}< \frac{1}{6}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2^{100}}>\frac{1}{2}-\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{3}\)

Vậy \(A>\frac{1}{3}\)(ĐPCM)

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

27 tháng 9 2020

sửa rồi nhá bn