K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

P = \(x^4-2x^3+2x^2-2x+1\)

P = \(x^4-x^3-x^3+x^2+x^2-x-x+1\)

P = \(x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-\left(x-1\right)\)

P = \(\left(x-1\right)\left(x^3-x^2+x-1\right)\)

P = \(\left(x-1\right)\left[x^2\left(x-1\right)+\left(x-1\right)\right]\)

P = \(\left(x-1\right)\left(x-1\right)\left(x^2+1\right)\)

P = \(\left(x-1\right)^2\left(x^2+1\right)\) \(\ge\forall x\) ( đpcm )

Chúc bạn học tốt :))

3 tháng 10 2019

 = (x2-x+1)(x2+3x+10)+10 = P

x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0

x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0

vây P>0

22 tháng 10 2021

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

6 tháng 10 2018

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

6 tháng 10 2018

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~ 

5 tháng 12 2016

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

5 tháng 12 2016

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

27 tháng 5 2016

a) kết quả là x^2-2x+3

b) CM NÈ:

X^2-2X+3=(X^2-2X+1)+2=(X-1)^2+2

VÌ (X-1)^2>=0 VỚI MỌI X=>(X-1)^2+2>0 VỚI MỌI x=> GIÁ TRỊ BIỂU THỨC LUÔN DƯƠNG

8 tháng 1 2017

Biểu thức  x + 1 x 2 xác định khi x  ≠  0

Biểu thức  x 2 + 1 x 2 + 2 x + 1 1 x + 1 xác định khi x  ≠  0 và x  ≠  - 1

Với điều kiện x  ≠  0 và x  ≠  - 1, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy giá trị của biểu thức  x + 1 x 2 : x 2 + 1 x 2 + 2 x + 1 1 x + 1 bằng 1 với mọi giá trị x  ≠  0 và x  ≠  -1.