\(P=\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}< 3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Chịu không giao luu nổi

1 tháng 1 2017

Cứ rút từ từ là ra

10 tháng 11 2017

Có : 2 > \(\sqrt{3}\) ; 3 > \(\sqrt{4}\) ; ..... ; 1999 > \(\sqrt{2000}\)

=> VT = \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999\sqrt{2000}}}}}\)<   \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999.1999}}}}\)

\(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{1999}}}}\) < ........ < \(\sqrt{2\sqrt{3}}\) <  \(\sqrt{2.2}\) = 2

=> ĐPCM

10 tháng 11 2017

Ta có: \(n=\sqrt{n^2}=\sqrt{1+n^2-1}=\sqrt{1+n-1.n+1}\)

Áp dụng công thức trên với \(n=4,5,6\)ta có:

\(4=\sqrt{1+3.5}=\sqrt{1+3\sqrt{1+4\sqrt{1+5.7}}}=\sqrt{1+3\sqrt{1+\sqrt{4\sqrt{1+...n-1\sqrt{n+1^2}}}}}\)

\(>\sqrt{3\sqrt{4\sqrt{...2000}}}\)

Do đó: \(\sqrt{2+\sqrt{3\sqrt{4\sqrt{...2000}}}}< \sqrt{2+2}=2\)

5 tháng 8 2018

c/m \(\sqrt{a+n}+\sqrt{a-n}< 2\sqrt{a}\)

  \(\left(\sqrt{a+n}+\sqrt{a-n}\right)^2< \left(2\sqrt{a}\right)^2\)

\(\Leftrightarrow a+n+a-n+2\sqrt{a^2-n^2}< 4a\)

\(2a+2\sqrt{a^2-n^2}< 2a+2\sqrt{a^2}\)

\(2a+2\sqrt{a^2-n^2}< 4a\)

=>\(\sqrt{2001-1}+\sqrt{2001+1}< 2\sqrt{2001}\)

nên\(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\left(đpcm\right)\)

23 tháng 7 2019

a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) ) 

b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)

c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )