K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

gọi ƯCLN (2n+3;4n+8) là d

=> 2n+3 chia het cho d        ;       4n+8 chia hết cho d

=>2(2n+3) chia hết cho d

hay 4n+6 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

           2 chia hết cho d

=> d thuộc {1;2}

*) xét d=2 thì 2n+3 chia hết cho 2

                   mà 2n chia hết cho 2 nhưng 3 không chia hết cho 2

=>d khác 2

=> d =1

vậy phân số 2n+3/4n+8 là phân số tối giản với mọi n thuôc N

8 tháng 4 2016

gọi d là UCLN(2n+3;4n+8)

ta có:

4n+8-2(2n+3) chia hết d

=>4n+8-4n+3 chia hết cho d

=>2 chia hết cho d

=>d thuộc {1,2}

mà ps trên tối giản khi d=1

15 tháng 5 2015

Gọi d là ƯCLN của n và 2n+1

Ta có: n chia hết cho d

2n+1 chia hết cho d

=>2n chia hết cho d

2n+1 chia hết cho d

Ta có: (2n+1)-2n chia hết cho d

=>1 chia hết cho d 

=>d=1

=> ƯCLN của n và 2n+1 là 1

Vậy phân số \(\frac{n}{2n+1}\) là phân số tối giản

Gọi d là ƯCLN của n và 2n+1

Ta có: n chia hết cho d

2n+1 chia hết cho d

=>2n chia hết cho d

2n+1 chia hết cho d

Ta có: (2n+1)-2n chia hết cho d

=>1 chia hết cho d 

=>d=1

=> ƯCLN của n và 2n+1 là 1

Vậy phân số n/2n+1  là phân số tối giản

25 tháng 11 2023

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2

5 tháng 2 2016

Gọi ƯC( 4n+1; 6n+1 ) = d

 4n+1 ⋮ d  12n+3 ⋮ d

 6n+1 ⋮ ⇒ 12n+2 ⋮ d

 [ ( 12n+3 ) - ( 12n+2 ) ] ⋮ d

 1 ⋮ d  d = + 1

Vì ƯC( 4n+1; 6n+1 ) = + 1 nên \(\frac{4n+1}{6n+1}\) là p/s tối giản

5 tháng 2 2016

thanks nE N nên không cần + 1 nữa 

3 tháng 8 2020

câu 1 là mọi n nhé

3 tháng 8 2020

Gọi ƯCLN của 2n + 1 và 3n + 1 là d, ta có:

\(2n+1⋮d\) và \(3n+1⋮d\)

\(\Rightarrow3\left(2n+1\right)⋮d;2\left(3n+1\right)⋮d\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\frac{2n+1}{3n+1}\)là p/s tối giản với mọi n

24 tháng 5 2016

Gọi UCLN(n+1;2n+3) = d, ta có:

n+1 chia hết cho d

=> 2n+2 chia hết cho d

2n + 3 chia hết cho d

=> (2n+3)-(2n+2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

(2n-2n)+(3-2) chia hết cho d

1 chia hết cho d

=> d thuốc Ư(1) ={1;-1}

=> \(\frac{n+1}{2n+3}\) là phân số tối giản

Chúc bạn học tốt!hihi

24 tháng 5 2016

Vì ps n+1 / 2n + 3 là ps tối giản nên n +1 và 2n +3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC của n +1 và 2n + 3
Ta có : (2n +3 ) - ( 2(n+1) ) chia hết cho d
   Hay : (2n +3 ) - ( 2n +2 ) chia hết cho d
 =>         2n +3 - 2n - 2 chia hết cho d
   =>                     1 chia hết cho d => d ϵ Ư ( 1 ) = + 1
Vậy n + 1 / 2n + 3 là phân số tối giản 

18 tháng 3 2018

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Leftrightarrow2⋮d\)

\(\Leftrightarrow d\inƯ\left(2\right)\)

+) \(d=2\Leftrightarrow2n+3⋮2\)

\(2n⋮2\)

\(\Leftrightarrow3⋮2\left(loại\right)\)

\(\LeftrightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Leftrightarrow\dfrac{2n+3}{4n+8}\) tối giản với mọi n

19 tháng 3 2018

cảm ỏn bạn đã giúp mình giải bài toán nàyhihi

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

24 tháng 3 2016

a. Muốn phân số n+1/2n+3 tối giản thì n+1 và 2n+3 có ƯCLN=1

Giả sử n+1 và 2n+3 có ước là a

=>n+1 chia hết cho a và 2n+3 chia hết cho

=>2(n+1) chia hết cho a và 2n+3 chia hết cho a

=>2n+2 chia hết cho a và 2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=> 1 chia hết cho a hay a thuộc Ư(1) = {1}

Vậy phân số n+1/2n+3 tối giản

Bây giờ mk bận, tối về giải tiếp nhé