Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1023 chia hết cho 3 không chia hết cho 9
vt: Phải chia hết cho 3 => x=3t khi x=3t thì vế trái chia hết cho 9 => đpcm
Vì \(x^2,y^2,z^2\)là các số chính phương nên chia 8 dư 0, 1, 4.
Suy ra \(x^2+y^2+z^2\)chia 8 được số dư là một trong các số : 0, 1,,3, 4, 6.
Mà 1999 chia 8 dư 7
Suy ra phương trình không có nghiệm nguyên
\(x^2-y^2=2010\)
Với \(x\inℤ\)thì x^2 ; y^2 chia 4 dư 0 hoặc 1
x^2 - y^2 chia 4 dư 0 hoặc 1 hoặc 3 ( 1 )
mà 2010 chia 4 dư 2 (2)
từ (1) ; (2) Vậy phương trình vô nghiệm
Ta có :
VT : x2; y2 chia cho 4 dư 0 ; 1 => x2 + y2 chia cho 4 dư 0 ; 1 ; 2 (1)
VP : 1999 chia cho 4 dư 3 (2)
Từ (1) và (2) => PT đã cho vô nghiệm
\(pt\Leftrightarrow x^3+2000x-1=y^2\Leftrightarrow x^3-x+2001x-1=y^2\Leftrightarrow\left(x-1\right)x\left(x+1\right)+2001x-1=y^2\)
Vì \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮3\\2001x⋮3\end{cases}\Rightarrow}\)(x-1)x(x+1)+2001x-1 chia 3 dư 2 mà y2 chia 3 chỉ dư 0 hoặc 1 nên PT vô nghiệm
Vậy PT không có nghiệm nguyên
VT sẽ được phân tích thành
\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)
Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên
^_^
a. Thay x = 2 vào vế trái của phương trình (1), ta có:
22 – 5.2 + 6 = 4 – 10 + 6 = 0
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (1).
Thay x = 2 vào vế trái của phương trình (2), ta có:
2 + (2 – 2)(2.2 +1) = 2 + 0 = 2
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (2).
Vậy x = 2 là nghiệm chung của hai phương trình (1) và (2).
b. Thay x = 3 vào vế trái của phương trình (1), ta có:
32 – 5.3 + 6 = 9 – 15 + 6 = 0
Vế trái bằng vế phải nên x = 3 là nghiệm của phương trình (1).
Thay x = 3 vào vế trái của phương trình (2), ta có:
3 + (3 – 2)(2.3 + 1) = 3 + 7 = 10 ≠ 2
Vì vế trái khác vế phải nên x = 3 không phải là nghiệm của phương trình (2).
Vậy x = 3 là nghiệm của phương trình (1) nhưng không phải là nghiệm của phương trình (2).
c. Hai phương trình (1) và (2) không tương đương nhau vì x = 3 không phải là nghiệm chung của hai phương trình.
vlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
sao khó vậy
\(\text{Ta có:}2010.2011⋮2;2xy⋮2\Rightarrow x^2⋮2\Rightarrow x⋮2\Rightarrow x^2⋮4;2xy⋮4\text{ mà:}\)
\(\text{2010.2011 chia hết cho 2 nhưng không chia hết cho 4 nên: }x^2+2010.2011\text{ không chia hết cho 4}̸\)
\(\text{mà: }2xy⋮4\left(\text{cmt}\right)\text{ nên phương trình không có nghiệm nguyên}\)
Ta có: \(x^2-2xy+y^2-y^2+2010.2011=0\)
<=> \(\left(x-y\right)^2+2010.2011=y^2\)
số chính phương chia 4 dư 1 hoặc 0
=> VP chia 4 dư 1 hoặc 0 (1)
Ta có: (x-y)^2 chia 4 dư 1 hoặc 0 mà 2010.2011 chia 4 dư 2
=> VT chia 4 dư 3 hoặc 2 (2)
Từ (1) ; (2) => không tồn tại x; y nguyên.