K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

Ta có : \(ax^2+bx+c=0\)có hai nghiệm trái dấu khi và chỉ khi \(\frac{c}{a}< 0\)

Áp dụng vào phương trình \(x^2+x-1=0\)có : \(-\frac{1}{1}< 0\)

=> phương trình \(x^2+x-1=0\)có 2 nghiệm trái dấu ( điều phải chứng minh )

18 tháng 10 2020

Dùng công thức nghiệm tìm được hai nghiệm \(x_1=\frac{-1-\sqrt{5}}{2}< 0\)và \(x_2=\frac{-1+\sqrt{5}}{2}>0\)

Vậy phương trình  x2 + x - 1 = 0 có 2 nghiệm trái dấu

\(D=\sqrt{x_1^8+10x_1+13}+x_1=\left[\sqrt{x_1^8+10x_1+13}+\left(x_1-5\right)\right]+5\)\(=\frac{x_1^8+10x_1+13-x_1^2+10x_1-25}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5\)\(=\frac{x_1^8-x_1^2+20x_1-12}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=\frac{\left(x_1^2+x_1-1\right)\left(x_1^6-x_1^5+2x_1^4-3x_1^3+5x_1^2-8x_1+12\right)}{\sqrt{x_1^8+10x_1+13}-\left(x_1-5\right)}+5=5\)(Do x1 là nghiệm của phương trình x2 + x - 1 = 0 nên \(x_1^2+x_1-1=0\))

6 tháng 1 2018

Đáp án cần chọn là: A

9 tháng 3 2023

Em nhập câu hỏi nhé!

9 tháng 3 2023

1) x(x - 1)(x² + 4) = 0

x = 0 hoặc x - 1 = 0

x = 0 hoặc x = 1

Vậy phương trình đã cho có 2 nghiệm

2) Do x² ≥ 0

⇒x² + 1 > 0

Để biểu thức đã cho nhận giá trị âm thì -x < 0

Hay x > 0

Ko có số nào thỏa mãn

a:

Thay x=2 vào (1), ta được:

\(2^2-5\cdot2+6=0\)(đúng)

Thay x=2 vào (2), ta được:

\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)

b: (1)=>(x-2)(x-3)=0

=>S1={2;3}

 (2)=>\(x+2x^2+x-4x-2-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

=>(x+2)(x-1)=0

=>S2={-2;1}

vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)

6 tháng 6 2017

Hai phương trình không tương đương.

DD
8 tháng 8 2021

Ta có hằng đẳng thức: 

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Ta thấy \(\left(x-1\right)+\left(x-2\right)+\left(3-2x\right)=0\)

do đó \(\left(x-1\right)^3+\left(x-2\right)^3+\left(3-2x\right)^3=3\left(x-1\right)\left(x-2\right)\left(3-2x\right)\)

suy ra \(\left(x-1\right)\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x_1=1\\x_2=2\\x_3=\frac{3}{2}\end{cases}}\)

\(S=\frac{29}{4}\).

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

25 tháng 11 2018

a) Thay x = 2 vào bất phương trình ta được: x2 = 22 = 4 > 0

Vậy x = 2 là một nghiệm của bất phương trình x2 > 0.

Thay x = -3 vào bất phương trình ta được x2 = (-3)2 = 9 > 0

Vậy x = -3 là một nghiệm của bất phương trình x2 > 0.

b) Với x = 0 ta có x2 = 02 = 0

⇒ x = 0 không phải nghiệm của bất phương trình x2 > 0.

Vậy không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho.