Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2a^2 + a = 3b^2 + b
<=> 2a^2 + a - 3b^2 - b = 0
<=> 3a^2 + a - 3b^2 - b = a^2
Xét (a-b).(3a+3b+1) = 3a^2-3ab+3ab-3b^2+a-b = 3a^2-3b^2+a-b = a^2 là 1 số chính phương (1)
Gọi ƯCLN của a-b;3a+3b+1 là d ( d thuộc N sao )
=> a-b chia hết cho d
3a+3b+1 chia hết cho d
a^2 chia hết cho d^2
=> a-b chia hết cho d , 3a+3b +1 chia hết cho d , a chia hết cho d
=> a chia hết cho d , b chia hết cho d , 3a+3b+1 chia hết cho d
=> 1 chia hết cho d => d = 1 ( vì d thuộc N sao )
=> a-b và 3a+3b+1 nguyên tố cùng nhau (2)
Từ (1) và (2) => a-b và 3a+3b+1 đều là số chính phương
1.
a) ( a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
= [(a+1)(a-1)][(a-2)(a+2)](a^2+1)(a^2+4)
=[(a^2+1)(a^2-1)][(a^2+4)(a^2-4)]
=(a^4-1)(a^4-16)
b)(3a+1)^2 + (2-3a)(2+3a)
= 9a2 + 6a +1 + 4 - 9a2
= 6a+5
2.
Ta có a3 +b3 = ( a + b)(a2 -ab + b2) = a2 + 2ab +b2 -3ab = (a+b)2 -3ab = 1-3ab ( dpcm)
1.
a) (a + 1)(a + 2)(a2 + 4)(a - 1)(a2 + 1)(a - 2)
= [(a + 1)(a - 1)][(a + 2)(a - 2)](a2 + 4)(a2 + 1)
= (a2 - 1)(a2 - 4)(a2 + 4)(a2 + 1)
= [(a2 - 1)(a2 + 1)][(a2 - 4)(a2 + 4)]
= (a4 - 1)(a4 - 16)
= a8 - 16a4 - a4 + 16
= a8 - 17a4 + 16
b) (3a + 1)2 + (2 - 3a)(2 + 3a)
= 9a2 + 6a + 1 + 22 - 9a2
= (9a2 - 9a2) + 6a + (1 + 4)
= 6a + 5
2.
a + b = 1
(a + b)3 = 13
a3 + 3a2b + 3ab2 + b3 = 1
a3 + b3 + 3ab(a + b) = 1
a3 + b3 = 1 - 3ab(a + b)
Mà a + b = 1
=> a3 + b3 = 1 - 3ab
Vậy với a + b = 1 thì a3 + b3 = 1 - 3ab
Có: \(a^3-3a^2+2a=a\left(a^2-3a+2\right)\)\(=a\left(a^2-a-2a+2\right)=a\left[a\left(a-1\right)-2\left(a-1\right)\right]\)
\(=a\left(a-1\right)\left(a-2\right)\)
Vì \(a\left(a-1\right)\left(a-2\right)\)là tích ba số liên tiếp nên có chứa thừa số chia hết cho 2 và chia hết cho 3
mà 2 và 3 là hai số nguyên tố cùng nhau nên tích \(a\left(a-1\right)\left(a-2\right)⋮\left(2\cdot3\right)\Leftrightarrow a\left(a-1\right)\left(a-2\right)⋮6\)
Vậy \(a^3-3a^2+2a⋮6\)