Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là UCLN ( 2n+1;2n\(^2\)+2n)
2n+1\(⋮\)d=> n(2n+1)\(⋮\)d=> (2\(n^2\)+n)\(⋮\)d
2n\(^2\)+nchia hết cho d
=> ( 2n\(^2\)+2n-(\(2n^2\)+n))\(⋮\)d
mà n\(⋮d\)
2n+1chia hết cho d
=> 2n+1-2n chia hết cho d
<=> 1chia hết cho d => d =1
vậy 2n+1.2n(n+1) luôn tối giản với \(\forall\) n
a) Ta có :
\(n+5⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow3⋮n+2\)
Vì \(n\in N\Leftrightarrow n+2\in N;n+2\inƯ\left(3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2=1\Leftrightarrow n=-1\left(loại\right)\\n+1=3\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)
Vậy ....
b) Ta có :
\(4n+9⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+9⋮n+1\\4n+4⋮n+1\end{matrix}\right.\)
\(\Leftrightarrow5⋮n+1\)
Vì \(n\in N\Leftrightarrow n+1\in N;n+1\inƯ\left(5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=1\Leftrightarrow n=0\\n+1=5\Leftrightarrow n=4\end{matrix}\right.\)
Vậy ....