Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{a^3+a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+a\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi ƯCLN(a2 + a - 1,a2 + a + 1) là d
=> a2 + a - 1 chia hết cho d
a2 + a + 1 chia hết cho d
=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d
=> 2 chia hết cho d
=> d = {1;2}
Mà a2 + a - 1 = a(a + 1) - 1 là số lẻ nên d là số lẻ
=> d khác 2
=> d = 1
Vậy A là phân số tối giản (đpcm)
Nếu có bạn nào trả lời thì ngoài t.i.c.k đúng tớ còn pải làm thế nào để 'chọn câu trả lời này'??
Gọi d là ƯCLN (2n+1;2n+3) (d thuộc N*)
=> (2n+3)-(2n+1) chia hết cho d
=> 2 chia hết cho d
Mà d thuộc N* => d={1;2}
Ta có 2n+1 không chia hết cho 2 và 2n+3 không chia hết cho 2
=> d=1
=> đpcm
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
Đặt A=1/22+1/32+...+1/42
Ta có 1/22<1/1.2(vì 22>1.2)
1/32<1/2.3(vì 32>2.3)
..............
1/20132<1/2012.2013(vì 20132>2012.2013)
=>1/22+1/32+...+1/20132<1/1.2+1/2.3+...+1/2012.2013
=>A<1-1/2+1/2-1/3+...+1/2012-1/2013
=>A<1-1/2013
mà 1-1/2013<1=>A<1
Vậy 1/22+1/32+...+1/20132<1
gọi d làước chung lớn nhất (2n+2;2n+1)
ta có (2n+2-2n-1)=1
Neenn 2n+2/2n+1 là phân số tối giản với n thuộc N thuộc số tự nhiên khác ko
\(\frac{2n^2+1}{3}\in Z\Rightarrow2n^2+1\text{ chia hết cho }3\Rightarrow2n^2\text{ chia 3 dư 2}\)
\(\Rightarrow n^2\text{ chia 3 dư 1}\Rightarrow n\text{ chia 3 dư 1}\)
\(\Rightarrow n\text{ không chia hết cho 3 }\Rightarrow\frac{n}{3}\text{ tối giản}\)
\(n\text{ chia 3 dư 1 }\Rightarrow2n\text{ chia 3 dư 2}\Rightarrow2n+3\text{ chia 3 dư 2}\)
\(\Rightarrow2n+3\text{ không chia hết cho 3}\Rightarrow2n+3\text{ không chia hết cho 6}\)
\(\Rightarrow\frac{2n+3}{6}\text{ tối giản}\)
Đề bài sai rùi bn ơi, chứng minh \(\frac{n+1}{2n+3}\)là phân số tối giản mới đúng
Gọi d = ƯCLN(n+1, 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2 x (n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1, 2n+3) = 1
=> phân số n+1/2n+3 tối giản
*** Chú ý: Muốn chứng minh 1 phân số là phân số tối giản ta chỉ việc chứng minh ƯCLN của tử và mẫu = 1 ***
Ủng hộ mk nha ^_-