\(\frac{n^2+n-1}{n^2+n+1}\)là tối giản với mọi n 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Gọi d=ƯCLN(n2+n-1 ; n2+n+1)

=> \(n^2+n-1⋮d\)

\(n^2+n+1⋮d\)

=> \(\left(n^2+n+1\right)-\left(n^2+n-1\right)⋮d\)

=> \(2⋮d\)

Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ

=> \(d\ne2\)

=> d=1

Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản

22 tháng 2 2019

Gọi d=ƯCLN(n2+n-1 ; n2+n+1)

=> n^2+n-1⋮d

n^2+n+1⋮d

=> (n2+n+1)−(n2+n−1)⋮d

=> 2⋮d

Ta có n2+n+1=n(n+1)+1. Mà n(n+1) là tích của 2 số tự nhiên liên tiếp nên là số chẵn =>n2+n+1 là số lẻ

=> d khác 2

=> d=1

Vì ƯCLN ( n2+n-1 ; n2+n+1)=1 nên phân số đã cho tối giản

4 tháng 7 2016

Đặt A=1/22+1/32+...+1/42

Ta có 1/22<1/1.2(vì 22>1.2)

1/32<1/2.3(vì 32>2.3)

..............

1/20132<1/2012.2013(vì 20132>2012.2013)

=>1/22+1/32+...+1/20132<1/1.2+1/2.3+...+1/2012.2013

=>A<1-1/2+1/2-1/3+...+1/2012-1/2013

=>A<1-1/2013

mà 1-1/2013<1=>A<1

Vậy 1/22+1/32+...+1/20132<1

2 tháng 4 2017

gọi d làước chung lớn nhất (2n+2;2n+1)

ta có (2n+2-2n-1)=1

Neenn 2n+2/2n+1 là phân số tối giản với n thuộc N thuộc số tự nhiên khác ko

25 tháng 7 2015

ta có n4+3n2+1=(n3+2n)n+n2+1

n3+2n=(n2+1)n+n

n2+1=n.n+1

n=1.n

vậy ucln(n4+3n2+1, n3+2n)=1(đpcm)

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

23 tháng 1 2018

 5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *

Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)

=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản

Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)

=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

26 tháng 5 2020

Với số tự nhiên n

Ta có: ( n + 1; n + 2 ) = ( (n + 2 ) - ( n + 1 ) ; n + 1 ) = ( n ; n + 1 ) = ( ( n + 1 ) - n ; n ) = ( 1; n ) = 1 

=> n + 1 và n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{n+1}{n+2}\) tối giản.