Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=UCLN(a,a+b);
=> a chia hết cho d
a+b chia hết cho d
=>a chia hết cho d
b chia hết cho d
Mà phấn số a,b tối giản =>UCLN(a,b)=1;
=>d=1;
=>UCLN(a,a+b)=1
=>a/a+b là p/s tối giản
Chúc bạn hok tốt!
nếu \(\frac{a}{b}\) là phân số tối giản thì \(\frac{a}{a+b}\) là phân số tối giản.
VD:\(\frac{1}{2}\rightarrow\frac{1}{1+2}=\frac{1}{3}\)
\(\frac{1}{3}\rightarrow\frac{1}{1+3}=\frac{1}{4}\)
....................................
Chứng minh rằng phân số\(\frac{a}{b}\) tối giản khi và chỉ khi \(\frac{a}{a+b}\) là phân số tối giản
ví dụ là 1 số chẳn là 2 thi phấn số sẻ ra \(\frac{2}{2+1}\)bằng số liên tiếp ko chia được nêu trường hợp a là số lẻ là 3 thì cũng như vậy thui nha k đi
Gọi d là ƯCLN của a,a+1
Ta có:\(a⋮d;a+1⋮d\)
\(\Leftrightarrow a+1-a⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy \(\frac{a}{a+1}\) là phân số tối giản
Khi UCLN(a,b)=1 thì ta nói \(\frac{a}{b}\) là phân số tối giản
gọi d = ƯCLN(a; b)
=> a chia hết cho d; b chia hết cho d
=> (a+b) chia hết cho d
=> d = ƯC(a +b ;b) => ƯCLN(a+b; b) ≥ d
Mà a/b chưa tối giản => d > 1
=> ƯCLN(a+b; b) ≥ d > 1
=> a+b/ b chưa tối giản
a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).
Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )
\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .
Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).
Gọi d = ƯCLN ( a, a + b ) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b là tối giản => d = 1
=> ƯCLN(a, a + b ) = 1
=> a/b là tối giản