\(\dfrac{n^7+n^2+1}{n^8+n+1}\)không tối giản với mọi n thuộc Z
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2019

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

26 tháng 11 2017

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

11 tháng 8 2015

\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n^2+1\right)}=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n^2+1}\)

=>phân số ban đầu chưa tối giản với mọi n

29 tháng 8 2017

Ta có :

\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{n^7-n^4+n^4-n+n^2+n+1}{n^8-n^5+n^5-n^2+n^2+n+1}\)

\(=\frac{n^4\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)}{n^5\left(n^3-1\right)+n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(=\frac{n^4\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}{n^5\left(n-1\right)\left(n^2+n+1\right)+n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)

\(=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n+1\right)}\)

\(=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\)

Do phân số \(\frac{n^7+n^2+1}{n^8+n+1}\) còn thu gọi được thành \(\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\) nên nó chưa tối giản (đpcm)

30 tháng 11 2017

Violympic toán 8

30 tháng 11 2017

https://hoc24.vn/hoi-dap/question/488321.html

13 tháng 12 2022

Bài 1:

Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)

=>30n^2+21n+13-30n^2-16n-12 chia hết cho d

=>5n+1 chia hết cho d

=>5n chia hết cho d và 1 chia hết cho d

=>d=1

=>P là phân số tối giản

5 tháng 11 2023

bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3

 

 

bạn phải cm ƯCLNcủa tử và mẫu là 1

24 tháng 6 2019

bạn giải hộ mình với

5 tháng 11 2018

Ta có :

 \(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+n^2+n+1\)

\(=n^2(n^2-1)(n^4+n^2+1)+n^2+n+1\)

\(=n^2(n^2-1)(n^4+2n^2+1-n^2)+n^2+n+1\)

\(=n^2(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)

Mặt khác :

\(n^7+n^2+1=n^7-n+n^2+n+1\)

\(=(n-1)(n^6-1)+n^2+n+1\)

\(=(n-1)(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)

Vậy chúng đều có ước chung \(n^2+n+1\)và \(n^2+n+1>1\)nên phân số đó không tối giản

Hok tốt :>