\(7^2+7^3+7^4+...+7^{2016}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

8 tháng 11 2018

Ta có : P = \(7^2+7^3+7^4+....+7^{2016}\)

chia hết cho 120 nên chia hết cho 20 nhé cm đi 

28 tháng 12 2015

P=7(1+7+72+73+...+72015)

P=7[(1+7+72+73)+(74+75+76+77)+...+(72012+72013+72014+72015)]

P=7[400+74(1+7+72+73)+...+72012(1+7+72+73)]

P=7[400(1+74+...+72012)]

P=202[7(1+74+...+72012)] chia hết cho 202 (đpcm)

28 tháng 12 2015

làm ơn làm phước tick cho mình lên 210 điểm hỏi đáp đi

31 tháng 12 2015

P=7(1+7+72+73+...+72015)

P=7[(1+7+72+73)+(74+75+76+77)+...+(72012+72013+72014+72015)]

P=7[400+74(1+7+72+73)+...+72012(1+7+72+73)]

P=7[400(1+74+...+72012)]

P=202[7(1+74+...+72012)] chia hết cho 202 (đpcm)

9 tháng 12 2017

bạn làm hơi tắt 

25 tháng 12 2015

Ta thấy: 7 + 72 + 73 + 74 = 7 + 49 + 343 + 2401 = 2800 chia hết cho 202

P = 7 + 72 + 73 + ... + 72016 = ( 7 + 72 + 73 + 74) + 74( 7 + 72 + 73 + 74) + ... +  72012( 7 + 72 + 73 + 74)

P = 2800 + 74 . 2800 + ... + 72012 . 2800 = 2800( 1 + 74 + ... + 72012 )

Mà 2800 chia hết cho 202 \(\Rightarrow\)  P chia hết cho 202 

25 tháng 12 2015

em mới hoc lớp 6 thui ạ .

ai đi qua tích nha

13 tháng 12 2017

P có tất cả 2016 số hạng. Nhóm 4 số hạng liên tiếp với nhau ta được 504 nhóm như sau:

P=(7+72+73+74)+...+(72013+72014+72015+72016)

=> P=7.(1+7+72+73)+...+72013(1+7+72+73)

=> P=7.(1+7+49+343)+...+72013(1+7+49+343)

=> P=7.400+...+72013.400

=> P=400.(7+...+72013)

=> P=202.(7+...+72013)

=> P chia hết cho 202

9 tháng 12 2016

\(7^6+7^5-7^4=7^6+7-7^0\)

\(7^4.7^2+7-1\)

\(7^4.\left(7^2+7-1\right)\)

\(7^4.\left(49+7-1\right)\)

\(7^4.55\)

Vì có thừa số 55 nên 74.55 chia hết cho 55

Vì 74.55 chia hết 55 nên 76+75-74 chia hết cho 55

9 tháng 12 2016

vì 76+75-74=132055

=>132055.:55

=> 76+75-74.:55

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)