K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

th1 n là số lẻ 

nếu n là số lẻ thì n+2017 là số chẵn nên (n+2016).(n+2017)là 1 số chẵn 

th2 n là số chẵn 

nếu n là số chẵn thì n+2016 là số chẵn nên (n+2016).(n+2017)là 1 số chẵn

29 tháng 11 2017

Với mọi \(n\in N\) thì trong 2 số \(n\)\(n+2017\) luôn có 1 số chẵn và 1 số lẻ

\(\Rightarrow\)Tích của chúng là số chẵn(đpcm)

24 tháng 7 2015

Nếu n là chẵn thì n+1 là lẻ.

Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.

Nếu n là lẻ thì n+1 là chẵn

Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn

Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n

9 tháng 8 2017

xet n=2k =>n chia het cho 2

xét n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2

vay n.(n+1) la so chan voi moi so tu nhien n

24 tháng 11 2021

Giả sử nếu n là một số lẻ ta có:

 n + 2010 là một số lẻ

 n + 2013 là một số chẵn

Mà tích của một số lẻ và một số chẵn là số chẵn

=> Với n là một số lẻ thì thỏa mãn yêu cầu đề bài

Giả sử nếu n là một số chãn ta có:

 n + 2010 là một số chẵn

 n + 2013 là một số lẻ

Mà tích của.... ( viết như trên)

=> Với n là một số chẵn cũng thỏa mãn yêu cầu đề bài

Vậy (n+2010)(n+2013) là một số chẵn với mọi số tự nhiên n 

<=> ĐPCM

_HT_

1 tháng 10 2021

\(n\left(n+5\right)\)

+ Với n chẵn:

\(\Rightarrow n⋮2\Rightarrow n\left(n+5\right)⋮2\) là số chẵn với mọi số tự nhiên n

+ Với n lẻ:

\(\Rightarrow n+5⋮2\Rightarrow n\left(n+5\right)⋮2\) là số chẵn với mọi số tự nhiên n

4 tháng 10 2021

chẵn x lẻ = chẵn và ngược lại lẻ x chẵn = chẵn;nếu N = chẵn thì trong ngoặc = lẻ;chẵn x lẻ = chẵn

nếu N = lẻ thì trong ngoặc bằng chẵn ; lẻ x chẵn = chẵn

tick cho mình nhé

31 tháng 10 2016

Nếu n là số chẵn thì n + 7 là số lẻ

số lẻ . số chẵn = số chẵn ((n+7).n)

nếu n là số lẻ thì n + 7 là số chẵn

số lè . số chẵn = số chẵn (n.(n+7))

31 tháng 10 2016

n= 2k :

\(n\left(n+7\right)=2k\left(2k+7\right)\) => chẵn 

n=2k+1 

\(n\left(n+7\right)=\left(2k+1\right)\left(2k+8\right)=\left(2k+1\right)2\left(k+4\right)\) => chẵn 

Vậy tích n(n+7) là số chẵn với mọi stn

11 tháng 7 2023

Nếu n không chia hết cho 2 thì n có dạng 2k+1 (kϵN)

⇒ (n+4).(n+7)=(2k+1+4).(2k+1+7)=(2k+5).(2k+8)⋮2 (vì 2k+8⋮2) (1)

Nếu n chia hết cho 2 thì n có dạng 2k (kϵN)

⇒ (n+4).(n+7)=(2k+4).(2k+7)⋮2 (vì 2k+4⋮2) (2)

Từ (1) và (2)⇒ Với mọi số tự nhiên n thì tích (n+4).(n+7)⋮2 (ĐPCM)

 

11 tháng 7 2023

Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 ( k ϵ N )

Nếu n = 2k

⇒ 2k + 4 = 2( k + 2 ) ⋮ 2

Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn

Nếu n = 2k + 1

⇒ 2k + 8 = 2( k + 4 ) ⋮ 2

Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn

Vậy với mọi số tự nhiên n thì ( n + 4 )( n + 7 ) là số chẵn

16 tháng 10 2018

Với n chẵn thì n = 2k

\(\Rightarrow16^{2k}-1=256^k-1=\left(256-1\right)\left(256^{k-1}+...\right)\)\(=255\left(256^{k-1}+...\right)=17.15.\left(256^{k-1}+...\right)\)

Chia hết cho 17

Với n lẻ thì n = 2k + 1

\(\Rightarrow16^{2k+1}-1=16\left(16^{2k}-1\right)+15\)không chia hết cho 17

Vậy 16n - 1 chia hết cho 17 khi và chỉ khi n là số chẵn