K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2024

\(n\left(n+1\right)\left(2n+1\right)\\ =n\left(n+1\right)\left[2n-2+3\right]\\ =n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)\\ =2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta có:

`+)(n-1)n(n+1)` là tích của 3 số tự nhiên liên tiếp `=>(n-1)n(n+1)` chia hết cho 3 

`=>2(n-1)n(n+1)` chia hết cho 6 (1) 

`+)n(n+1)` là tích của 2 số tự nhiên liên tiếp `=>n(n+1)` chia hết cho 2

`=>3n(n+1)` chia hết cho 6 (2)

Từ (1) và (2) => `n(n+1)(2n+1)` chia hết cho 6 

15 tháng 8 2024

a; (n + 10)(n + 15)

+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2

+ Nếu n là số lẻ ta có: n + 15 là số chẵn 

⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2 

Từ những lập luận trên ta có:

A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N

7 tháng 12 2019

a/

+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

b/ 

n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2

+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3 với mọi n

=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n

c/

n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

=> n(2n+1)(7n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3

Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

=> n(2n+1)(7n+1) chia hết cho 3 với mọi n

=> n(2n1)(7n+1) chia hết cho 6 với mọi n

8 tháng 10 2017

trả lời giùm tớ ,tớ đang làm bài này

8 tháng 10 2017

Cậu làm xong chưa? Trả lời hộ tớ

11 tháng 11 2015

Ta có: A=n.(n+1).(2n+1)

Vì n và n+1 là 2 số tự nhiên liên tiếp

=>n.(n+1) chia hết cho 2

=>n.(n+1).(2n+1) chia hết cho 2

=>A chia hết cho 2(1)

Lại có:

Vì n là số tự nhiên

=>n có 3 dạng 3k,3k+1,3k+2

*Xét n=3k=>n chia hết cho 3=>n.(n+1).(2n+1) chia hết cho 3

=>A chia hết cho 3

*Xét n=3k+1=>2n+1=2.(3k+1)+1=2.3k+2+1=3.2k+3=3.(2k+1) chia hết cho 3

=>A chia hết cho 3

*Xét n=3k+2=>n+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3

=>A chia hết cho 3

             =>A chia hết cho 3(2)

Từ (1) và (2) ta thấy:

A chia hết cho 2 và 3

mà (2,2)=1

=>A chia hết cho 2.3

=>A chia hết cho 6

=>ĐPCM

11 tháng 11 2015

sao có thể ra khó thế này đây