Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Ta có: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
144n – 11n chia hết 133 11n + 2 + 122n + 1 chia hết cho 133
chúc bạn học tốt !!!
Trong 3 số `2n+1, 2n+2, 2n+3` luôn có một số chia hết cho 3
\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮3\) (1)
Xét \(n⋮2\)
Có: \(2n⋮2,2⋮2\Rightarrow2n+2⋮2\)
\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮2\) (2)
Xét \(n⋮̸2\)
Có: \(2n⋮2\left(dư1\right),1⋮2\left(dư1\right)\Rightarrow2n+1⋮2\)
\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮2\) (3)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrowđpcm\)
n(n + 1)(2n + 1) chia hết cho 6
n(n + 1)(2n + 1) chia hết cho 2 và 3
n(n + 1) là tích 2 số tự nhiên liên tiếp
Nên n(n + 1) chia hết cho 2 < = > n(n + 1)(2n + 1) chia hết cho 2
n chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 1 => 2n + 1 chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 2 => n + 1 chia hết cho 3 => Tích chia hết cho 3
< = > n(n + 1)(2n + 1) chia hết cho 3
UCLN(2,3) = 1
Do đó n(n + 1)(2n + 1) chia hết cho 2.3 = 6
=> ĐPCM
Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)
⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)
⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)
Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:
2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)