K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

a) a2 + b2 + c2 = ab + ac + bc

=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc

=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

=> (a - b)2 + (a - c)2 + (b - c)2 = 0 

Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0

=> a = b = c 

6 tháng 8 2016

b) a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

=> a3 + 3a2b + 3ab+ b3 + c3 - 3abc - 3a2b - 3ab2 = 0

=> (a + b)3 + c3 - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0 

=> a + b + c = 0

hoặc a2 + b2 + c2 = ab + bc + ac =>  a = b = c

28 tháng 8 2015

a2+b2+c2=ab+ac+bc

<=>2a2+2b2+2c2=2ab+2ac+2bc

<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0

<=>(a-b)2+(a-c)2+(b-c)2=0

<=>a-b=0 và a-c=0 và b-c=0

<=>a=b=c

1 tháng 10 2016

\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(ab+bc+ac\right)\right]\)\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)

6 tháng 2 2017

Biến đổi vế trài ta có

a3+b3+c3-3abc+3ab(a+b)-3ab(a+b)

=(a+b)(a2-ab+b2)-3ab(a+b+c)+3ab(a+b)+c3

=(a+b)(a+b)2+c3-3ab(a+B+c)

=......................

Bn cứ nhóm lại là = vế phải.

10 tháng 3 2017

bạn thiếu dấu cộng giữa b2 và cvì vậy vế phải là (a+b+c)(a2+b2+c2 -ab-bc-ac)

Ta có : a3+b3+c3 -3abc = (a+b)3 -3ab(a+b)+c3 -3abc = (a+b)3 +c3  -3ab(a+b+c)

                                   =(a+b+c)3 -3(a+b)c(a+b+c)-3ab(a+b+c)

                                   =(a+b+c)((a+b+c)2-3(ac+bc)-3ab)

                                   =(a+b+c)(a2+b2+c2 +2ab +2ac +2bc -3ab -3bc -3ac )

                                   =(a+b+c)(a2+b+c2-ab-bc-ac)=vp (đpcm)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

29 tháng 7 2020

VT = a3 + b3 + c3 - 3abc = (a + b)(a2 - ab + b2) + c3 - 3abc

= (a + b)(a2 + 2ab + b2 - 3ab) + c3 - 3abc

= (a + b)3 - 3ab(a + b) + c3 - 3abc

= (a + b+ c)[(a + b)2 - c(a + b) + c2] - 3ab(a + b+  c)

= (a + b + c))(a2 + 2ab + b2 - ac - bc + c2 - 3abc)

= (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = VP

=> ĐPCM

29 tháng 7 2020

Sửa đề :

VP= (a+b+c)(a2+b2+c2-ab-bc-ca)

     =a3+ab2+ac2-a2b-abc-ca2+ba2+b3+bc2-ab2-b2c-abc+ca2+cb2+c3-abc-bc2-c2a

     =a3+b3+c3-3abc

Cách này đỡ phức tạp hơn cách của edogawa conan