\(\frac{x^2+y^2}{x-y}\ge\)4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

x2+y2>=2xy=4 (theo BDT Co-si)

x>y => x-y>0

Toi day de roi nhe

18 tháng 5 2016

giải lại giúp tui nha nãy bị thiếu k để ý

16 tháng 4 2019

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

16 tháng 4 2019

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé

14 tháng 12 2020

\(bdt< =>x\left(x+y\right)\le\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{y}< =>x^2-xy+y^2\ge xy\)

\(< =>\left(x-y\right)^2\ge0\)(dpcm)

6 tháng 4 2020

*Áp dụng Cosi với x,y>0 ta có:

\(x+y\ge2\sqrt{xy}\left(1\right)\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(2\right)\)

Nhân (1),(2) có: \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\RightarrowĐPCM\)

**\(\frac{1}{xy}+\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}+\frac{1}{x^2+y^2}\)

Ta có: \(\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{4}{x^2+2xy+y^2}=4\)


6 tháng 4 2020

Có: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{\left(x+y\right)^2}\le4\)

Theo Cosi ta có: \(xy\le\left(\frac{x+y}{2}\right)^2\)

\(\Rightarrow\frac{1}{xy}\ge\left(\frac{2}{x+y}\right)^2\ge\left(\frac{2}{1}\right)^2=4\)

Áp dụng Cosi ta có: \(2xy\left(x^2+y^2\right)\le\left(\frac{x^2+2xy+y^2}{2}\right)^2=\frac{\left(x+y\right)^4}{4}\le\frac{1}{4}\)

\(\Rightarrow xy\left(x^2+y^2\right)\le\frac{1}{8}\)(1)

Mà ta có ở trên: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)(2)

Từ (1) và (2) ta có: \(x^2+y^2\le\frac{1}{2}\Rightarrow\frac{1}{x^2+y^2}\ge2\)

Vậy Ta có: \(\frac{1}{xy}+\frac{1}{x^2+xy}+\frac{1}{y^2+xy}+\frac{1}{x^2+y^2}\ge4+4+2=10\)

Với x=y=1/2

25 tháng 5 2019

Áp dụng BĐT : ( a + b + c )2 \(\ge\)3 ( ab + bc + ac )

Ta có : \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge\frac{3\left(xy+y+x\right)}{xy+y+x}=3\)

đặt \(\frac{\left(x+y+1\right)^2}{xy+y+x}=A\)

ta có : \(A+\frac{1}{A}=\frac{8A}{9}+\frac{A}{9}+\frac{1}{A}\ge\frac{8.3}{9}+2\sqrt{\frac{A}{9}.\frac{1}{A}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

25 tháng 5 2019

Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Áp dụng ta được

\(\left(x+y+1\right)^2\ge3\left(x+y+xy\right)\)=> \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge3\)

Đặt \(\frac{\left(x+y+1\right)^2}{x+y+xy}=t\)(\(t\ge3\))

Khi đó

\(VT=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8}{9}t\ge\frac{2}{3}+\frac{8}{9}.3=\frac{10}{3}\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}t=3\\x=y=1\end{cases}}\)=> x=y=1

Lưu ý 

Nhiều người sẽ nhầm \(VT\ge2\)

Khi đó dấu bằng \(\left(x+y+1\right)^2=xy+x+y\)không xảy ra 

26 tháng 3 2017

để cm thì ta cần cm nó đúng khi x+y=1 

x+y=1

y=-(x-1) và x=-(y-1)

thế vào ta được 

-(x-1)/(x^3-1)--(y-1)/(y^3-1)=2(x-y)/(x^2y^2+3)

ta có x^3-1=(x-1)(x^2+x+1),y^3-1=(y-1)(y^2+y+1)

từ đó rút gọn ta được -1/(x^2+x+1)+1/(y^2+y+1)=2(x-y)/(x^2y^2+3)

1/(y^2+y+1)-1/(x^2+x+1)=2(x-y)/(x^2y^2+3)

(x^2+x+1-y^2-y-1)/(y^2+y+1)(x^2+x+1)=2(x-y)/(x^2y^2+3)

ta có x^2+x+1-y^2-y-1=x^2-y^2+x-y=(x-y)(x+y)+x-y=(x-y)(x+y+1)=2(x-y)

từ đó suy ra 2(x-y)/(y^2+y+1)(x^2+x+1)=2(x-y)/(x^2y^2+3)

suy ra (y^2+y+1)(x^2+x+1)=x^2+y^2+3

x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1=x^2y^2+3

x^2y^2+(xy^2+y^2+x^2y+xy+x^2)+x+y+1=x^2y^2+3

x^2y^2+(xy^2+y^2+x^2y+xy+x^2)+2=x^2y^2+3 

ta có xy^2+y^2+x^2y+xy+x^2

=xy(x+y)+xy+y^2+x^2

=x^2+2xy+y^2

=(x+y)^2

=1^2

=1 

thế vào ta được 

x^2y^2+3=x^2y^2+3

vậy pt trên đúng khi x+y=1

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!!

16 tháng 8 2021

\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy ) 

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy ) 

\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)

15 tháng 5 2016

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

<=> \(\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)

<=> \(\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)

Rồi bạn quy đồng mẫu lên và phân tích tử và mẫu thành nhân tử => chứng minh tử \(\ge\) 0 và mẫu >0 nhé

=> ĐPCM

15 tháng 5 2016

đề thiếu dấu căn ở mẫu (hình như là thế)