Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
Khi đó ta chứng minh được :
\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)
Mà \(x+y+z=0\)
\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)
Từ đó ta suy ra :
\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)
\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)
\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)
\(=xyz\)( ĐPCM )
Hên xui thôi
1/y+1/x+1/z=0
=>xy+yz+xz=0(tự cm)
(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2=0
x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+3xyz=3xyz
x^6+y^6+z^6=(x^2+y^2+z^2)(X^4+y^4+z^4+x^2y^2+y^2z^2+z^2z^2)+3(xyz)^2=3(xyz)^2
=> (x^6+y^6+z^6)/(x^3+y^3+z^3)=3(Xyz)^2/3xyz=xyz(dpcm)
:D???? ể??
\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-y-z\\y=-z-x\\z=-x-y\end{cases}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\)
\(\hept{\begin{cases}xy=\left(-y-z\right).y=-y^2-zy\\yz=\left(-x-z\right).z=-z^2-xz\\xz=\left(-y-x\right).x=-x^2-xy\end{cases}}\Rightarrow xy+yz+zx=-\left(x^2+y^2+z^2+xz+xy+zy\right)=0\)
\(\Leftrightarrow x=y=z=0??????\)
p/s: ko biết t lỗi hay đề lỗi ((:
Có : (x-y)^2 >= 0
<=> x^2-2xy+y^2 >= 0
<=> x^2+y^2 >= 2xy
<=> x^2+2xy+y^2 >= 4xy
<=> (x+y)^2 >= 4xy
Với x,y > 0 thì chia 2 vế bđt cho (x+y).xy > 0 ta được :
x+y/xy >= 4/x+y
<=> 1/x + 1/y >= 4xy
=> ĐPCM
Dấu "=" xảy ra <=> x=y > 0
Tk mk nha
a.
Vơi mọi x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\) (1)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2>\dfrac{1}{2}.1=\dfrac{1}{2}\) (đpcm)
b.
Sử dụng kết quả (1), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}=2\) (đpcm)
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)
\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)
\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x = -y hoặc y = -z hoặc z = -x
Không mất tổng quát giả sử x = -y, khi đó:
\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)
\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)
\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)
ơi STN = số thứ nhất
STH = SỐ THỨ 2 NHÉ
STB = SỐ THỨ 3 NHA
Chứng minh rằng nếu \(x>0\)thì \(\frac{1}{x}-\frac{1}{x+1}>0\):
Ta có : \(\frac{1}{x}-\frac{1}{x+1}>0\Rightarrow\frac{1}{x}>\frac{1}{x+1}\)
\(\Rightarrow x+1>x\)(đúng)
Học tốt