Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(n^2+5.n+5⋮25\left(1\right)\)
\(\Rightarrow n^2+5.n+5⋮5\)
Do \(5.n⋮5;5⋮5\Rightarrow n^2⋮5\)
Mặt khác, 5 là số nguyên tố \(\Rightarrow n⋮5\)
\(\Rightarrow n^2⋮25;5.n⋮25\) mà \(5⋮̸25\)
\(\Rightarrow n^2+5.n+5⋮̸25\), trái với (1)
Vậy \(n^2+5.n+5⋮̸25\forall n\in N\left(đpcm\right)\)
Ta có: n2 + n = n . n + n = n.(n + 1)
Ta nhận thấy n.(n + 1) là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng có thể là 0 ; 2 ; 6.
Do đó, n.(n + 1) + 6 có thể có chữ số tận cùng là 2 ; 6 ; 8.
Vì tận cùng là 2 ; 6 ; 8 không chia hết cho 5 nên suy ra n2 + n + 6 không chia hết cho 5.
Vậy \(n^2+n+6⋮5\).
Đúng thì tick nha letienluc!
n2+n+1=n.(n+1)+1
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó chia hết cho 2.Khi nó cộng với 1 thì sẽ không chia hết cho 2
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó có chữ số tận cùng là 0,2,6 và khi cộng với 1 thì có đuôi là 1,3,7 và không chia hết cho 5
vậy số đó không chia hết cho 2 và 5
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
n2+n+3
=>n.(n+1)+2
=>n.n+1+2
=>2n+3
=>2n+3 kohoong chia hết cho 2 vì 3 không chi hết cho 2
mọi người ơi vào giúp mình với chiều mình p đi hc rồi ahhuhuhuhuhuhuhuhuhuhuhuhuhuhuh
Để n^2+6n+6 chia hết cho 36
=> n^2+6n+6 chia hết cho 6
Mà 6n và 6 chia hết cho 6 => n^2 chia hết cho 6
=> n^2 chia hết cho 2 và 3
Mà 2 và 3 là 2 số nguyên tố
=> n chia hết cho 2 và 3
=> n chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> n^2 và 6n đều chia hết cho 36
Mà 6 ko chia hết cho 36 => n^2+6n+6 ko chia hết cho 36
=> ĐPCM
Tk mk nha
n2 + n + 1 = n(n + 1) + 1
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng là 0; 2; 6. Do đó n(n + 1) + 1 có chữ số tận cùng là 1; 3; 7
Vì 1; 3; 7 \(⋮̸\) 2; 5 \(\Rightarrow\) n(n + 1) + 1 \(⋮̸\) 2; 5
Vậy n2 + n + 1 \(⋮̸\) 2 và 5
Ta có \(n^2+n+1=n\left(n+1\right)+1\)
Mà \(n\left(n+1\right)\) là 2 số tự nhiên liên tiếp nên chúng luôn \(⋮2\); \(1⋮2̸\)
\(\Leftrightarrow n^2+n+1⋮̸2\left(đpcm\right)̸\)
Vì \(n;n+1\) là 2 số tự nhiên liên tiếp nên tận cùng của tích là \(0;2;6\)
\(\Leftrightarrow n\left(n+1\right)+1\) có tận cùng là \(1;3;7\)
\(\Leftrightarrow n^2+n+1⋮5̸\)\(\left(đpcm\right)\)
a)A=n2+n+1
=n.(n+1)+1
Vì n;n+1 là 2 số tự nhiên liên tiếp nên: n.(n+1) chia hết cho 2 hay n.(n+1) là số chẵn
=>A=n.(n+1)+1 là số lẽ không chia hết cho 2
\(=3^{n+2}+3^n-2^{n+2}-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=10.3^n-2.2^{n-1}.5=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\)
Chia hết cho 10
(l ike nha)
n^2+n+6 = n(n+1)+6
Tích 2 số tự nhiên liên tiếp có tận cùng là những chữ số : 0; 2; 6
=> n(n+1)+6 sẽ có các tận cùng sau đây : 6; 8; 4
Những số có tận cùng là 4; 6; 8 thì ko thể chia hết cho 5