\(m=a^x.b^y.c^z\) thì số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Ta có : x2-x-1\(⋮\)x-1

\(\Rightarrow\)x(x-1)-1\(⋮\)x-1

Vì x(x-1)\(⋮\)x-1 nên 1\(⋮\)x-1

\(\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta có bảng sau :

x-1-11
x02

Vậy x\(\in\){0;2}

17 tháng 3 2019

a) Ta có:

\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)

\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)

\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)

\(=x+2x+-3+1-21\)

\(=3x-23\)

=> \(3x-23=2020\)

\(3x=2020+23=2043\)

=> \(x=2043:3=681\)

17 tháng 3 2019

Nhầm

\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)

\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)

3 tháng 6 2018

Câu 1:

\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)+\left(1+\frac{1}{3.5}\right)+...\left(1+\frac{1}{2014.2016}\right)\)

\(\Rightarrow C=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{2015.2015}{2014.2016}\)

\(\Rightarrow C=\frac{4.9.16...2015.2015}{3.8.15...2014.2016}\)

\(\Rightarrow C=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4...2014.2016}\)

\(\Rightarrow C=\frac{2.3.4...2015.2.3.4...2015}{1.2.3...2014.3.4.5...2016}\)

\(\Rightarrow C=\frac{2015}{1008}.\)

Vậy \(C=\frac{2015}{1008}.\)

Câu 2:

Do p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\)hoặc\(3k+2\)

+ Nếu \(p=3k+1\Rightarrow p^2-1=\left(3k+1\right)^2-1\)

                                                      \(=9k^2+3k+3k+1-1\)

                                                      \(=9k^2+6k⋮3.\)( 1 )

+ Nếu \(p=3k+2\Rightarrow p^2-1=\left(3k+2\right)^2-1\)

                                                      \(=9k^2+6k+6k+4-1\)

                                                        \(=9k^2+12k+3⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow p^2-1⋮3\left(đpcm\right).\)

Câu 3:

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=10^{30}.\)( 1 )

\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.512^7< 2^{31}.125.625^7=2^{31}.5^{31}=\)\(10^{31}.\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow10^{30}< 2^{100}< 10^{31}.\)

\(\Rightarrow\)2100  khi viết trong hệ thập phân có 31 chữ số.

                                           Đáp số: 31 chữ số.

3 tháng 6 2018

Câu 1 : 

C = (1 + 1/1.3)(1 + 1/2.4)(1 + 1/3.5) .... (1 + 1/2014.2016) 

C = (1.3/1.3 + 1/1.3) (2.4/2.4 + 1/2.4) ... (2014.2016/2014.2016 + 1/2014.2016) 

C =  2.2/1.3 * 3.3/2.4 * ... * 2015.2015/2014.2016 

C = 2.3....2015/1.2....2014 * 2.3....2015/3.4....2016 

C = 2015 * 1/1008

C = 2015/1008

10 tháng 8 2019

Câu 1,

x+y=-1/3 ; y+z=5/4 ; x+z= 4/3

=> 2(x+y+z)=9/4

=> x+y+z=9/8

Ta lại có: x+y=-1/3

=> z=9/8 -(-1/3)=35/24

Ta lại có: z+y=5/4

=> y=-5/24

=> x=.....

Câu 2:

\(-4\le x\le-\frac{11}{18}\)

9 tháng 7 2015

hình như mk nhầm thì phải

11 tháng 10 2018

+) chia hết cho 2:

Nếu n = 2k+1 thì n+1 \(⋮\)2

Nếu n = 2k thì n+4 \(⋮\)2

+) chia hết cho 3:

nếu n = 3k thì n + 3 \(⋮\)3

nếu n = 3k +1 thì n +5 = 3k +6 \(⋮\)3

nếu n  = 3k +2 thì n+1 = \(3k+3⋮3\)

Vậy tích trên luôn chia hết cho 2 và 3

2 tháng 2 2016

n=6

(6^2+6=42 chia het cho 6+1=7)

2 tháng 2 2016

(n.n+6) chia hết cho(n+1)

n(n+1)+5 chia hết cho (n+1)

suy ra 5 chia hết cho ( n+1)

suy ra ( n+1) thuộc Ư(5)

.........rồi còn lại cứ thế tim ước của 5 rùi tính nha!!!

7 tháng 5 2015

gọi d = ƯCLN(a; b) 

=> a chia hết cho d; b chia hết cho d

=> (a+b)  chia hết cho d 

=> d = ƯC(a +b ;b) => ƯCLN(a+b; b)  d

Mà a/b chưa tối giản => d > 1 

=> ƯCLN(a+b; b)  d > 1

=> a+b/ b chưa tối giản