\(\left(a^2+ab+b^2\right)⋮10\)thì \(\left(a^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

ffjgukgkkgk

5 tháng 5 2019

a) \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

5 tháng 5 2019

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

Đến đây làm tương tự câu a

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

9 tháng 5 2018

Theo bài ra ta có: \(\left|a-c\right|+\left|b-c\right|< \left(3+2\right)\)

Hay: \(\left|a-c\right|+\left|c-b\right|< 5\) => \(\left|a-c+c-b\right|< 5\) => \(\left|a-b\right|< 5\)