K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2022

Giả sử \(\Delta ABC~\Delta DEF\). Đặt \(BC=a;AC=b;AB=c;EF=d;DF=e;DE=f\) \(\left(a,b,c,d,e,f>0\right)\). Đặt \(\dfrac{a}{d}=k\left(k>0\right)\)

Bán kính đường tròn ngoại tiếp, nội tiếp tam giác ABC lần lượt là \(R_1,r_1\)  với \(R_1>r_1>0\) 

Bán kính đường tròn ngoại tiếp, nội tiếp tam giác DEF lần lượt là \(R_2,r_2\) với \(R_2>r_2>0\)

Theo công thức diện tích, ta có \(S_{ABC}=\dfrac{abc}{4R_1}\) và \(S_{DEF}=\dfrac{def}{4R_2}\). Do đó: \(\dfrac{S_{ABC}}{S_{DEF}}=\dfrac{\dfrac{abc}{4R_1}}{\dfrac{def}{4R_2}}=\dfrac{abc.4R_2}{def.4R_1}\)

Mà \(\dfrac{a}{d}=\dfrac{b}{e}=\dfrac{c}{f}=k\) nên \(\dfrac{abc}{def}=k^3\)

Lại có \(\dfrac{S_{ABC}}{S_{DEF}}=k^2\) nên ta có \(k^2=k^3.\dfrac{4R_2}{4R_1}\) hay \(\dfrac{R_2}{R_1}=\dfrac{1}{k}\) hay \(\dfrac{R_1}{R_2}=k\) (đpcm 1)

Mặt khác ta có \(S_{ABC}=p_1r_1\) với \(p_1=\dfrac{a+b+c}{2}\) 

và \(S_{DEF}=p_2r_2\) với \(p_2=\dfrac{d+e+f}{2}\)

Ta thấy \(\dfrac{a}{d}=\dfrac{b}{e}=\dfrac{c}{f}=\dfrac{a+b+c}{d+e+f}=k\) hay \(\dfrac{\dfrac{a+b+c}{2}}{\dfrac{d+e+f}{2}}=k\) hay \(\dfrac{p_1}{p_2}=k\)

Mà \(\dfrac{S_{ABC}}{S_{DEF}}=\dfrac{p_1r_1}{p_2r_2}\) hay \(k^2=k.\dfrac{r_1}{r_2}\) hay \(\dfrac{r_1}{r_2}=k\) (đpcm 2)

Như vậy ta có đpcm

5 tháng 2 2022

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

5 tháng 2 2022

này giống trên mạng r 

19 tháng 1 2021

Tham khảo:

Cho tam giác ABCa) CM: \(\left(p-a\right)\left(p-b\right)\left(p-c\right)< \dfrac{1}{8}abc\)b) \(\dfrac{r}{R}\le\dfrac{1... - Hoc24

19 tháng 1 2021

Like + share công khai giúp t với.

Facebook

16 tháng 2 2022

undefinedundefined

9 tháng 9 2018

1). Ta có góc nội tiếp bằng nhau  B D M ^ = B C F ^   ( 1 ) và  B M A ^ = B F A ^    suy ra  180 0 − B M A ^ = 180 0 − B F A ^  hay  B M D ^ = B F C ^  (2).

Từ (1) và (2), suy ra  Δ B D M ~ Δ B C F   (g - g).

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Ta có:}\)

∠BFC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AFC = 90o

∠BEC = 90o (góc nội tiếp chắn nửa đường tròn)=> ∠AEC = 90o

Tứ giác AEHF có:

∠AFC = 90o

∠AEC = 90o

=>∠AFC + ∠AEC = 180o

=> AEHF là tứ giác nội tiếp

b) ∠AFH = 90o => AH là đường kính đường tròn ngoại tiếp tứ giác AEHF

\(\text{Do đó trung điểm I của AH là tâm đường tròn ngoại tiếp tứ giác AEHF}\)

=> Bán kính đường tròn ngoại tiếp tứ giác AEHF là R = AI = \(\frac{AH}{2}\) = 2cm

Ta có: ∠BAC = 60o

=> ∠FIE = 2∠BAC = 120o (Góc nội tiếp bằng \(\frac{1}{2}\) góc ở tâm cùng chắn một cung)

=> Số đo ∠EHF = 120o

Diện tích hình quạt IEHF là:

\(S=\frac{\pi R^2N}{360}=\frac{\pi.2^2.120}{360}=\frac{4\pi}{3}\left(ĐVDT\right)\)

\(\text{c) Xét tam giác ABC có: }\)

BE và CF là các đường cao

BE giao với CF tại H

=> H là trực tâm tam giác ABC

=>AH ⊥ BC hay ∠ADC = ∠ADB = 90o

Xét tứ giác BEFC có:

∠BFC = ∠BEC = 90o

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc bằng nhau

=> BEFC là tứ giác nội tiếp

=> ∠HFE = ∠BEC ( 2 góc nội tiếp cùng chắn cung EC) (1)

Xét tứ giác BFHD có:

∠BFH = ∠HDB = 90o

=>∠BFH + ∠HDB = 180o

=> Tứ giác BFHD là tứ giác nội tiếp ( tổng 2 góc đối bằng 180o)

=> ∠DFH = ∠BEC ( 2 góc nội tiếp cùng chắn cung HD) (2)

Từ (1) và (2) = > ∠HFE = ∠DFH

=> FH tia phân giác của góc ∠DFE

d) Tam giác OFB cân tại O => ∠OFB = ∠FBO

Tam giác BFC vuông tại F => ∠FBO + ∠HCD = 90o

=> ∠OFB + ∠HCD = 90o (*)

\(\hept{\begin{cases}\Delta FIH\text{CÂN TẠI I}\\\widehat{IHF}=\widehat{DHC}\left(\text{ĐỐI ĐỈNH}\right)\\\Delta HDC\text{VUÔNG TẠI D}\Rightarrow\widehat{DHC}+\widehat{HDC}=90^0\end{cases}}\Rightarrow\widehat{IFH}+\widehat{HDC}=90^0\)

Từ (*) và (**) => ∠OFB = ∠IFH

=> ∠OFB + ∠OFH = ∠IFH + ∠OFH <=> ∠BFC = ∠FIO <=> ∠FIO) = 90o

Vậy FI là tiếp tuyến của (O)

Chứng minh tương tự EI là tiếp tuyến của (O)

Mà I là trung điểm của AH

=> Tiếp tuyến của (O) tại E và F và AH đồng quy tại 1 điểm.

HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP CỦA MIK NHA

VCN JACK trả lời cuc64 kì đ luôn . đ là chất 

8 tháng 3 2019

1). Gọi DE cắt (O) tại P khác D. Do AD là đường kính của (O), suy ra A P D ^ = 90 0 , mà A H E ^ = 90 0 ( do  H E ∥ B C ⊥ H A  ), nên tứ giác APEH nội tiếp.

Ta có A P H ^ = A E H ^  (góc nội tiếp)

= A C B ^ H E ∥ B C = A P B ^ (góc nội tiếp)

⇒ P H ≡ P B

2). Ta có H P ⊥ A C ⇒ A E H ^ = A H P ^ = A E P ^  

Suy ra EA là phân giác ngoài đỉnh E của tam giác DEF

Tương tự FA là phân giác ngoài đỉnh F của tam giác DEF

Suy ra A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF

3). Do I là tâm nội tiếp nên EI là tia phân giác trong.

Mà EA là tia phân giác ngoài, suy ra  E I ⊥ A C ⇒ E I ∥ H B

Tương tự F I ∥ H C ;   E F ∥ B C ⇒ Δ I E F   v à   Δ H B C có cạnh tương ứng song song, nên BE; CF và IH đồng quy.