\(\frac{a}{b}\) < \(\frac{c}{d}\)thì  ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

Vô lí nha

VD:\(\frac{5}{2}<\frac{7}{4}\Rightarrow\frac{5}{2}<\frac{12}{6}<\frac{7}{4}\left(sai\right)\)

19 tháng 6 2015

đề thiếu, b>0;d>0

1 tháng 7 2016

Vì  \(\frac{a}{b}\)  < \(\frac{c}{d}\)  nên ad < bc         (1)

Xét tích a(b + d) = ab + ad          (2)

             b ( a + c ) = ba + bc        (3)

Từ (1);(2);(3) suy ra a(b+d) < b(a+c)   do đó  \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)        (4)

Tương tự ta có \(\frac{a+c}{b+d}\)    <  \(\frac{c}{d}\)   (5)

kết hợp (4) ; (5) ta được \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)  

28 tháng 10 2016

\(\frac{a}{b}< \frac{c}{d}=>ad< bc\)

=>ad+ab<bc+ab

=>a(b+d)<b(a+c)

=>\(\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\frac{a}{b}< \frac{c}{d}=>ad< bc\)

=>ad+cd<bc+cd

=>a(a+c)<c(b+d)

=>\(\frac{a+c}{b+d}< \frac{c}{d}\) (2)

từ (1)(2)=>\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

chúc bạn học tốtok

28 tháng 8 2016

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow\hept{\begin{cases}ad+ab< bc+ab\\ad+cd< bc+cd\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+b\right)< c\left(b+d\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}< \frac{a+c}{b+d}\\\frac{a+c}{b+d}< \frac{c}{d}\end{cases}}\)

\(\Rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}.\)

Vậy \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}.\)

24 tháng 11 2016

Gọi biểu thức cần so sánh là A

Nếu a< b thì ​​\(\frac{a}{b+m}< \frac{a}{b}< \frac{a+m}{b+m}\)

=> \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

=> cộng các vế trái với nhau, vế giữa với nhau, vế phải với nhau, dâu < giữ nguyên, trong đó vế trái cộng lại rút gọn được 1, vế giữa là A, vế phải cộng lại rút gọn được 2, ra điều phải cm

13 tháng 6 2018

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ab+ad< ab+bc\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow\left(a+c\right)d< \left(b+d\right)c\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)