Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow1+\dfrac{a}{b}=1+\dfrac{c}{d}\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\left(đpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k\) ;\(c=d\cdot k\)
=>\(\dfrac{a+b}{b}=\dfrac{b\cdot k+b}{b}=\dfrac{b\cdot\left(k+1\right)}{b}=k+1\) (1)
=>\(\dfrac{c+d}{d}=\dfrac{d\cdot k+d}{d}=\dfrac{d\cdot\left(k+1\right)}{d}=k+1\) (2)
Từ (1) và (2) => \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Bài giải:
Với \(a,b,c,d\ne0\) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{b}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\Rightarrow\dfrac{a-b}{c-d}=\dfrac{b}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(ĐPCM\right)\)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)
Khi đó:
\(\dfrac{a+b}{a-b}=\dfrac{bt+b}{bt-b}=\dfrac{b\left(t+1\right)}{b\left(t-1\right)}=\dfrac{t+1}{t-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dt+d}{dt-d}=\dfrac{d\left(t+1\right)}{d\left(t-1\right)}=\dfrac{t+1}{t-1}\)
Ta có đpcm
Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Suy ra: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\left(1\right)\)
\(Và:\) \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Vậy \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\) \(\left(ĐPCM\right)\)
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
Áp dụng t/c' dãy tỉ số bằng nhau , ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\left(đpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k (1)
=> a=bk ,c=dk
a.Có \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2)=>\(\dfrac{a+c}{b+d}=\dfrac{a}{b}\left(=k\right)\)
b. Có \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) \(\left(1\right)\)
Tương tự :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) khi \(\dfrac{a}{b}=\dfrac{c}{d}\)
Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d