Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
:)
- Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\) (gt)
=>\(ad< bc\)
=>\(ad+ab< bc+ab\)
=>\(a\left(b+d\right)< b\left(a+c\right)\)
=>\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)
- Ta có: \(\dfrac{c}{d}>\dfrac{a}{b}\) (gt)
=>\(bc>ad\)
=>\(bc+cd>ad+cd\)
=>\(c\left(b+d\right)>d\left(a+c\right)\)
=>\(\dfrac{c}{d}>\dfrac{a+c}{b+d}\) (2)
- Từ (1) và (2) suy ra: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
a) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)\( \Rightarrow d(a + b) = b(c + d)\)\( \Rightarrow ad + bd = bc + bd\)
\( \Rightarrow ad = bc\) (luôn đúng)
\( \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
\(\begin{array}{l} \Rightarrow d(a - b) = b(c - d)\\ \Leftrightarrow ad - bd = bc - bd\\ \Leftrightarrow ad = bc\end{array}\) ( luôn đúng)
Vậy \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
\(\begin{array}{l} \Rightarrow a(c + d) = c(a + b)\\ \Leftrightarrow ac + ad = ac + bc\\ \Leftrightarrow ad = bc\end{array}\) (luôn đúng)
Vậy \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
a/b = b/c = c/d = (a + b + c)/(b + c + d)
--> ((a + b + c)/(b + c + d))^3 = a^3/b^3
Cần chứng minh:
a^3/b^3 = a/d
<=> a^3/b^3 = a^3/(a^2.d)
--> b^3 = a^2.d
Mà ad = bc (do a/b = c/d)
--> b^3 = abc
<=> b^2 = ac (luôn đúng do a/b = b/c)
--> đpcm
`a/b<(a+c)/(b+d)`
`<=>a(b+d)<b(a+c)`
`<=>ab+ad<ad<bc`
`<=>ad<bc`
`<=>a/b<c/d`(theo giả thiết)
`(a+c)/(b+d)<c/d`
`<=>d(a+c)<c(b+d)`
`<=>ad+cd<bc+dc`
`<=>ad<bc`
`<=>a/b<c/d`(theo giả thiết)`
`=>a/b<(a+c)/(b+d)<c/d`
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=>\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=>\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ b,\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\b=ck\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{b^3k^3+c^3k^3+d^3k^3}{b^3+c^3+d^3}=k^3\)
\(\dfrac{a}{d}=\dfrac{bk}{d}=\dfrac{ck^2}{d}=\dfrac{dk^3}{d}=k^3\)
Do đó: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
a: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
d: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Phần b và c lm ntn ạ?