Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : 2bd = c (b + d )
=) ( a + c ). d = bc + cd
=) ad + cd = bc + cd
=) ad = bc
=) a/b = c/ d ( đpcm)
Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)
Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
Vậy \(\frac{a}{b}=\frac{c}{d}\)
\(2b.d=c\left(b+d\right)\Leftrightarrow\left(a+c\right)d=c\left(b+d\right)\Leftrightarrow\frac{a+c}{c}=\frac{b+d}{d}\Leftrightarrow\frac{a}{c}+1=\frac{b}{d}+1\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
3.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\) và \(a+2b-3c=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)
+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)
+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)
Vậy ...
3.
ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5
vì\(\dfrac{a}{2}\)=5=>a=2.5=10
\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15
\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20
vậy a=10,b=15,c=20
chúc bạn hok tốt
Ta có:
\(a+c=2b_{\left(1\right)}.\)
\(2bd=c\left(b+d\right)_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\Rightarrow\left(a+c\right)d=c\left(b+d\right).\)
\(\Rightarrow ad+cd=cb+cd\) (t/c phân phối).
\(\Rightarrow ad=bc\) (rút gọn cả 2 vế cho \(cd\)).
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (t/c cơ bản của tỉ lệ thức).
\(\Rightarrowđpcm.\)