Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a²/(a-b) + b²/(b-c) = (2a²-2b²)/(a-b) + (b²-c²)/(b-c) + 2b²/(a-b) + c²/(b-c)
= 2(a+b) + (b+c) + 2b²/(a-b) + c²/(b-c)
>2a +3b +c (vì a,b,c > 0)
Áp dụng Cauchy Schwarz dạng Engel ta có :
\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Cho \(a=b=c\)
\(\Rightarrow2\left(\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\right)\ge1+\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\)
\(\Leftrightarrow2\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\)
\(\Leftrightarrow2\ge2\) ( Đúng)
\(\Rightarrow2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Với \(a>b>c:\hept{\begin{cases}\frac{2a^2}{a-b}\ge\frac{2a^2-2b^2}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)}{a-b}=2a-2b\\\frac{b^2}{b-c}\ge\frac{b^2-c^2}{b-c}=\frac{\left(b-c\right)\left(b+c\right)}{b-c}=b+c\end{cases}}\)
\(\Rightarrow\frac{2a^2}{a-b}+\frac{b^2}{b-c}\ge2a+3b+c\)
Dấu đẳng thức xảy ra \(\Leftrightarrow b=c=0\)(Vô lí với \(b>c\))
Vậy \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)