Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a3 + b3 + c3 = 3abc
<=> (a + b)3 - 3ab(a + b) + c3 = 3abc
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(\text{tmđk}\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
Khi a2 + b2 + c2 - ab - ac - bc = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(\text{loại}\right)\)
Vậy a + b + c = 0
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Do đó:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}.3.\left(a+b+c\right)\ge\dfrac{8}{3}\sqrt{3\left(ab+bc+ca\right)}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
a+b>=2căn ab
b+c>=2*căn bc
a+c>=2*căn ac
=>(a+b)(b+c)(a+c)>=2*2*2*căn ab*bc*ac=8
Ta có
\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3
ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)
= ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)
> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3
= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27
= 12 .3 - 8xyz - 18 .3 +27
9 - 8 xyz
ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1
do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)
hok tốt
Vì \(0\le a;b;c\le1\) \(\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\)
\(\Rightarrow a+b^2+c^3-ab-bc-ac\le a+b+c-ab-bc-ac\)
\(=\left(-1+a+b+c-ab-bc-ac+abc\right)-abc+1\)
\(=\left(1-a\right)\left(1-b\right)\left(1-c\right)-abc+1\)
Do \(1\ge a;b;c\ge0\) nên \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\-abc\le0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc\le0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc+1\le1\)
Hay \(a+b^2+c^3-ab-bc-ca\le1\)(đpcm)
Do\(1\ge a,b,c\ge0\)
\(\Rightarrow b\ge b^2,c\ge c^3\)
Do đó: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)(1)
Vì \(1\ge a,b,c\ge0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)
\(\Rightarrow a+b+c-ab-bc-ca+abc-1\le0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\)
Mà \(abc\ge0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1\)(2)
Từ (1) và (2) => đpcm