Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
Từng bài 1 thôi nha bn!!!
a) Xét hiệu: A = 9.(7x+4y) - 2. (13x+18y)
A = 63x + 36y - 26x - 36y
A = 37x \(\Rightarrow A⋮37\) Vì 7x + 4y chia hết cho 37
9.(7x+4y) chia hết cho 37
Mà A chia hết cho 37
\(2\left(13x+18y\right)⋮37\)
Do 2 và 37 là nguyên tố cùng nhau
13x+18y chia hết cho 37
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
Có : \(a;b\in Z\)và \(a;b\ne0\)
Mà : \(a\)là \(B_{\left(b\right)}\)thì \(a=b\cdot m\left(m\in Z\right)\)
\(b\)là \(B_{\left(a\right)}\)thì \(b=a\cdot n\left(n\in Z\right)\)
\(\Rightarrow a=b\cdot m=\left(a\cdot n\right)\cdot m=a\cdot\left(m\cdot n\right)\)
\(\Rightarrow m\cdot n=1\)
\(\Rightarrow m=n=1\)hoặc \(m=n=-1\)
+) Nếu \(m=n=1\)thì \(a=b\cdot m=b\cdot1=b\)( Vậy \(a=b\))
+) Nếu \(m=n=-1\)thì \(a=b\cdot m=b\cdot\left(-1\right)=-b\)( Vậy \(a=-b\))
a là bội của b \(\Rightarrow\) a = bk (k \(\in Z\)) (1)
b là bội của a \(\Rightarrow\) b = ah (h \(\in Z\)) (2)
Thay (2) vào (1) ta có:
a = ahk
\(\Rightarrow\) hk = 1
\(\Rightarrow\) \(\orbr{\begin{cases}h=1;k=1\\h=-1;k=-1\end{cases}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}a=-b\\a=b\end{cases}}\)
Bài 1 :
a) Do O thuộc đoạn thẳng AM nên O nằm giữa hai điểm A và M .Ta có :\(OA< MA\)
M là trung điểm của AB nên M nằm giữa A và B và;
\(MA=MB=\frac{1}{2}AB\)
\(\Rightarrow MA< AB\)
\(\Rightarrow OA< MA< AB\) chứng tỏ M nằm giữa O và B
Do đó : \(OM=OB-MB\)
Mặt khác ,theo trên : O nằm giưa A và M nên \(OM=MA-OA\)
\(\Rightarrow20M=OB-OA\)( Vì \(MA=MB\))
\(\Rightarrow OM=\frac{1}{2}\left(OB-OA\right)\)
b) TRƯỜNG HỢP 2 :
O thuộc tia đối của AB
Do M là trung điểm AB , O thuộc tia đối của AB
Nên : \(OM=OA+MA\)
và : \(OM=OB-MB\)
\(\Rightarrow20M=OA+OB\)
( Vì \(MA=MB\) )
\(\Rightarrow OM=\frac{1}{2}\left(OA+OB\right)\)
TRƯỜNG HỢP 2 :
O thuộc tia đối của 0A ,chứng minh tương tự ta cũng có : \(OM=\frac{1}{2}\left(OA+OB\right)\)
Vậy điểm O không thuộc đoạn thẳng AB thì \(OM=\frac{1}{2}\left(OA+OB\right)\)
Chúc bạn học tốt ( -_- )
a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2
Nếu a,b ko cùng tính chẵn lẻ thì
ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2
Nếu a,b lẻ thì (a+b) chia hết cho 2
=>ab(a+b) chia hết cho 2
b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
a) Xét 4 trường hợp :
TH1: a lẻ - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH2: a chẵn - b lẻ
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH3: a chẵn - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH4: a lẻ - b lẻ
=> a + b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
Vậy ta có đpcm
b) \(ab-ba=10a+b-10b-a\)
\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)
Gọi d = ƯCLN(a2; a+ b)
=> a2 chia hết cho d;
a+ b chia hết cho d => a.(a+b) chia hết cho d hay a2 + ab chia hết cho d
=> a2 + ab - a2 chia hết cho d => ab chia hết cho d mà a;b nguyên tố cùng nhau nên
a chia hết cho d hoặc b chia hết cho d
+) Nếu a chia hết cho d: Ta có a + b chia hết cho d => b chia hết cho d
=> d \(\in\) ƯC (a;b) mà ƯCLN(a; b) = 1 => d = 1 => ƯCLN(a2; a+ b) = 1
+) Nếu b chia hết cho d => a chia hết cho d (do a+ b chia hết cho d)
=> d \(\in\) ƯC (a;b) mà ƯCLN(a; b) = 1 => d = 1 => ƯCLN(a2; a+ b) = 1
Vậy ƯCLN(a2; a+ b) = 1
Gọi d = ƯCLN(a2; a+ b)
=> a2 chia hết cho d;
a+ b chia hết cho d => a.(a+b) chia hết cho d hay a2 + ab chia hết cho d
=> a2 + ab - a2 chia hết cho d => ab chia hết cho d mà a;b nguyên tố cùng nhau nên
a chia hết cho d hoặc b chia hết cho d
+) Nếu a chia hết cho d: Ta có a + b chia hết cho d => b chia hết cho d
=> d $\in$∈ ƯC (a;b) mà ƯCLN(a; b) = 1 => d = 1 => ƯCLN(a2; a+ b) = 1
+) Nếu b chia hết cho d => a chia hết cho d (do a+ b chia hết cho d)
=> d $\in$∈ ƯC (a;b) mà ƯCLN(a; b) = 1 => d = 1 => ƯCLN(a2; a+ b) = 1
Vậy ƯCLN(a2; a+ b) =