K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

Ta có: a2 + b2 = 2ab

=> a2 + b2 - 2ab = 0

=> (a - b)2 = 0

=> a - b = 0

=> a = b (Đpcm)

\(a^2+b^2=2ab\Leftrightarrow a^2+b^2-2ab=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

31 tháng 8 2017

Ichigo Sứ giả thần chết xem cách này có đúng ko?

 Ta áp dụng cô-si là ra 
a^2+b^2+c^2 ≥ ab+ac+bc 
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1) 
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2) 
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc) 
=> a^2 + b^2 + c^2 ≥ ab+ac+bc 
dấu = khi : a = b = c

19 tháng 1 2017

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3  \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2  \(\Rightarrow\)\(c^2\) chia 3 dư 2  (vô lý)
 \(\Rightarrow\)trường hợp  \(a\)\(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\)                                      \(\left(1\right)\)

+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4

  • Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 2            (vô lí) 
  • Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\)\(⋮\)\(5\) 
  • Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1  \(\Rightarrow\) \(c^2\) chia 5 dư 0  \(\Rightarrow\) \(c\) \(⋮\)\(5\)
  • Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4  \(\Rightarrow\) \(c^2\) chia 5 dư 3            (vô lí).                                               Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\)                                               \(\left(2\right)\)

+ Nếu  \(a,\)\(b,\)\(c\) không chia hết cho 4  \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia  8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia  8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4                             (3)
Từ (1) (2) và (3) => abc chia hết cho 60

2 tháng 10 2018

Từ a+b=c Ta được a+b-c=0

Do đó:\(\left(a+b-c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=0\)(đccm)

2 tháng 10 2018

Có thể ( chỉ là có thể thôi ) các bạn chưa học hằng đẳng thức nâng cao nên mình sẽ chứng minh và dùng nó luôn , còn các bạn cứ lấy nó mà dung , bởi vì nó cũng có thể được coi là " định lý ", đại loại thế

Bổ đề : CMR: \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

\(\left(a+b-c\right)\left(a+b-c\right)=a^2+ab-ac+ab+b^2-bc-ac-bc+c^2\)

\(=a^2+b^2+c^2+\left(ab+ab\right)-\left(ac+ac\right)-\left(bc+bc\right)\)

\(=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

Nhờ bổ đề trên\(\Rightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=a^2+b^2+c^2+2ab-2ac-2bc=\left(a+b-c\right)^2=0\)

\(\Rightarrow\)\(a+b-c=0\)vì \(\left(a+b-c\right)\ge0\)

\(\Rightarrow\)\(a+b=c\left(DPCM\right)\)

Còn nhiều hằng đẳng thức nâng cao nữa cũng kiểu dạng này, nếu bạn muốn biết thì hãy tự chứng minh nó và áp dụng nó vào bài như một bổ đề, mình chỉ chia sẽ kinh nghiệm vậy thôi

GOOD LUCK

Với x-1 ta có:

\(f\left(x\right)=a+b+c=0\)

Vậy x 1 nghiệm của đa thức f(x)

\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)

\(=\left[a.\left(a+b+c\right)+bc\right]\left[b.\left(a+b+c\right)+ac\right]\left[c.\left(a+b+c\right)+ab\right]\)

\(=\left(a^2+ab+ac+bc\right)\left(ba+b^2+bc+ac\right)\left(ca+cb+c^2+ab\right)\)

\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\left[\left(ca+c^2\right)\left(cb+ab\right)\right]\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(b+a\right)\right]\left[c\left(a+c\right)b\left(b+b\right)\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

\(\Rightarrowđpcm\)

1 tháng 10 2020

\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)

\(=\left[a\left(a+b+c\right)+bc\right]\left[b\left(a+b+c\right)+ac\right]\left[c\left(a+b+c\right)+ab\right]\)

\(=\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)\left(ac+bc+c^2+ab\right)\)

\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ab+b^2\right)+\left(bc+ac\right)\right]\left[\left(ac+c^2\right)+\left(bc+ab\right)\right]\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

\(=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

\(\Rightarrowđpcm\)

5 tháng 10 2016

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

30 tháng 9 2016

làm ơn giải hộ mình nhanh lên

4 tháng 7 2019

Ta có: (a2+b2)(x2+y2)=(ax+by)2

\(\Leftrightarrow\)a2x2+a2y2+b2x2+b2y2=a2x2+2abxy+b2y2

\(\Leftrightarrow\)a2y2-2abxy+b2x2=0

\(\Leftrightarrow\)(ay-bx)2=0

\(\Leftrightarrow\)ay=bx

\(\Leftrightarrow\)\(\frac{a}{x}\)=\(\frac{b}{y}\)

4 tháng 7 2019

#)Giải :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)

\(\Rightarrow a^2y^2+b^2x^2=2abxy\)

\(\Rightarrow a^2y^2+b^2x^2-2abxy=0\)

\(\Rightarrow\left(ay-bx\right)^2=0\)

\(\Rightarrow ay-bx=0\)

\(\Rightarrow ay=bx\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}\)(theo tính chất tỉ lệ thức) 

\(\Rightarrowđpcm\)