\(\frac{a+b}{a-b}\)= 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

mih nè

k cho mih

12 tháng 11 2017

\(a^2=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{a}\)

\(\left(1\right)\frac{a}{b}=\frac{c}{a}=\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}\)

\(\left(2\right)\frac{a}{b}=\frac{c}{a}=\frac{a}{c}=\frac{b}{a}=\frac{a-b}{c-a}\)

\(\left(1\right)\left(2\right)\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)( Đổi chỗ trung tỉ ) (ĐPCM)

6 tháng 10 2019

a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)

\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)

Chúc bạn học tốt!

2 tháng 5 2017

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow b^2=ac\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\left(đpcm\right)\)

2 tháng 5 2017

Đặt \(\frac{a}{b}=\frac{b}{c}=k\) =>\(\hept{\begin{cases}a=bk\\b=ck\end{cases}}\)                                                                                                                                                          Do đó:  \(\frac{a}{c}=\frac{bk}{c}=\frac{ck.c}{c}=k^2\) (1)                                                                                                                                              \(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\frac{b^2k^2+b^2}{c^2k^2+c^2}=\frac{b^2.\left(k^2+1\right)}{c^2.\left(k^2+1\right)}=\frac{b^2}{c^2}=\frac{\left(ck\right)^2}{c^2}=\frac{c^2k^2}{c^2}=k^2\) (2)          Từ (1) và (2) suy ra: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

22 tháng 1 2017

giúp tui đi T.T

1 tháng 11 2016

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> (a + b).(c - a) = (c + a).(a - b)

=> (a + b).c - (a + b).a = (c + a).a - (c + a).b

=> a.c + b.c - a2 - a.b = a.c + a2 - b.c - a.b

=> b.c - a2 = a2 - b.c

=> b.c + b.c = a2 + a2

=> 2.b.c = 2.a2

=> b.c = a2 (đpcm)

1 tháng 11 2016

Cách 1:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow a^2=b.c\)

Cách 2: Đặt \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k,\) ta có:

\(a+b=k\left(a-b\right)\)\(c+a=k\left(c-a\right)\)

\(\Rightarrow a\left(1-k\right)=b\left(-k-1\right)\)\(c\left(1+k\right)=a\left(-k-1\right)\)

\(\Rightarrow\frac{a}{b}=\frac{k+1}{k-1}\)\(\frac{c}{a}=\frac{k+1}{k-1}\)

Từ hai đẳng thức cuối ta được:

\(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=b.c\)

17 tháng 9 2016

\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

30 tháng 9 2018

Ta có a2 = bc 

<=> a . a = b .c 

<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)

\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)

(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

29 tháng 5 2015

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\Rightarrow ac+bc-a^2-ab=ac+a^2-bc-ab\Rightarrow bc-a^2=a^2-bc\)\(\Rightarrow bc=2a^2-bc\Rightarrow2a^2=2.bc\Rightarrow a^2=bc\)

3 tháng 7 2017

ta có (a+b)*(c-a)= ac+bc-a2-ab(1)

 (a-b)*(c+a)= ac-bc+a2-ab(2)

bỏ ac và -ab ở (1)(2) có

(1)= bc - a=0

(2)= a- bc = 0

=> Đpcm

12 tháng 10 2018

Đặt \(a^2=bc=k\Rightarrow\frac{a}{b}=\frac{c}{a}=k\Rightarrow\hept{\begin{cases}a=kb\\c=ka\end{cases}}\). Thay vào,ta có:

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+a}{c-a}=\frac{ka+a}{ka-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Do (1) = (2) suy ra \(\frac{a+b}{a-b}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)

31 tháng 5 2015

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Leftrightarrow\frac{a-b+2b}{a-b}=\frac{c-a+2a}{c-a}\)\(\Leftrightarrow1+\frac{2b}{a-b}=1+\frac{2a}{c-a}\)

\(\Leftrightarrow\frac{2b}{a-b}=\frac{2a}{c-a}\)\(\Rightarrow\)2b . (c - a) = 2a . (a - b) \(\Rightarrow\) 2bc - 2ba = 2a2 - 2ab

\(\Leftrightarrow\) 2bc = 2a2 \(\Leftrightarrow\) bc = a2 (điều phải chứng minh) 

18 tháng 1 2019

Từ giả thiết suy ra :\(\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)

Hay \(ac-a^2+bc-ab=ac-bc+a^2-ab\)

\(\Leftrightarrow-\left(a^2-bc+ab\right)=-\left(bc-a^2+ab\right)\)(bớt ac ở mỗi vế

\(\Leftrightarrow a^2-bc+ab=bc-a^2+ab\) (nhân hai vế với -1)

\(\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\) (chuyển vế + chia cả hai vế cho 2)