K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
20 tháng 2 2018
Ta có : \(A=\frac{a^2+a-1}{a^2+a+1}=\frac{a^2+a+1-2}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)
\(\Rightarrow\)a nguyên thì A là p/s tối giản
=> ĐPCM
DD
Đoàn Đức Hà
Giáo viên
27 tháng 5 2021
a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)
Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản.
\(\left(a^2+a-1;a^2+a+1\right)=\left(2;a^2+a+1\right)=1\)
Vì a2 + a +1 = a(a+1) + 1 = 2k +1 là số lẻ.
oeoe