Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(2a>b;2a>0\Rightarrow2a+2a>b+0\Rightarrow4a>b\)
b \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Rightarrow\left(4a-b\right)\left(a-b\right)=0\Rightarrow\hept{\begin{cases}4a-b=0\Rightarrow4a=b\\a-b=0\Rightarrow a=b\end{cases}}\)
Lời giải:
Xét hiệu \(a^2+b^2-2ab=(a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow a^2+b^2\geq 2ab\)
\(\Rightarrow 2(a^2+b^2)\geq (a+b)^2\)
\(\Leftrightarrow 2(a^2+b^2)\geq 1\Leftrightarrow a^2+b^2\geq \frac{1}{2}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
nguyễn thị thùy trang: có hai dấu suy ra thôi mà bạn, ý bạn là dấu suy ra ở dòng thứ 3 hả?
$a^2+b^2\geq 2ab$
$\Rightarrow a^2+b^2+a^2+b^2\geq a^2+b^2+2ab$
hay $2(a^2+b^2)\geq (a+b)^2$
Là vậy đó.
Đặt \(A=a^2+b^2\)
\(\Rightarrow2A=\left(a^2+b^2\right)\left(1+1\right)\)
Theo bunhiacopski, ta có:
\(2A\ge\left(a+b\right)^2\)
Mà \(a+b=1\)
\(\Rightarrow2A\ge1\)
\(\Rightarrow A\ge\frac{1}{2}\)
Vậy \(a^2+b^2\ge\frac{1}{2}\left(đpcm\right)\)
Cách khác: Vói mọi a; b ta luôn có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2\ge a-\frac{1}{4}\)
Tương tự với b,ta cũng có: \(b^2\ge b-\frac{1}{4}\).Cộng theo vế hai BĐT trên:
\(a^2+b^2\ge\left(a+b\right)-\frac{1}{2}=\frac{1}{2}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
áp dụng bất đẳng thức buinhia copxki
\(\left(a^2+b^2\right)\cdot\left(1^2+1^2\right)\ge\left(a\cdot1+b\cdot1\right)^2\)
\(\left(a^2+b^2\right)\cdot2\ge\left(a+b\right)^2=1\)
\(a^2+b^2\ge\frac{1}{2}\)
nếu bạn ko dùng được bunhia thì dùng cách này nhé mỗi tội hơn dài chút
có a+b=1\(\Rightarrow\left(a+b\right)^2=1\Rightarrow a^2+b^2+2ab=1\)1 mặt khác ta có \(a^2+b^2\ge2ab\forall ab\)dấu''=''xảy ra khi a=b (\(\left(a-b\right)^2\ge0\forall a;b\))nên \(1=a^2+b^2+2ab\le a^2+b^2+a^2+b^2=2\left(â^2+b^2\right)\)\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
đẳng thức xảy ra khi a=b
Áp dụng bđt Bunhiakovxki
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Ta có: a + b = 1 ⇔ b = 1 – a
Thay vào bất đẳng thức a2 + b2 ≥ 1/2 , ta được:
a2 + (1 – a)2 ≥ 1/2 ⇔ a2 + 1 – 2a + a2 ≥ 1/2
⇔ 2a2 – 2a + 1 ≥ 1/2 ⇔ 4a2 – 4a + 2 ≥ 1
⇔ 4a2 – 4a + 1 ≥ 0 ⇔ (2a – 1)2 ≥ 0 (luôn đúng)
Vậy bất đẳng thức được chứng minh
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
Ta có ( a - b )2 >= 0
=> a2 + b2 >= 2ab
=> 2 ( a2 + b2 ) >= a2 + b2 + 2ab
=> 2 ( a2 + b2 ) >= ( a + b )2 >= 12 ( gt )
=> 2 ( a2 + b2 ) >= 1
=> a2 + b2 >= 1/2
Chúc bạn học tốt môn toán nhé
Với mọi a, b ta có :
( a - b) 2 >= 0
<=> a2 - 2ab + b2 >= 0
<=> a2 + b2 >=2ab
<=> 2 ( a2 + b2 ) >= a2 +2ab + b2
<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1
<=> a2 + b2 >= 1/2
Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2
Với mọi a, b ta có :
( a - b) 2 >= 0
<=> a2 - 2ab + b2 >= 0
<=> a2 + b2 >=2ab
<=> 2 ( a2 + b2 ) >= a2 +2ab + b2
<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1
<=> a2 + b2 >= 1/2
Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2