K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

Đặt A=6(x+7y)-(6x+11y)

= 6x+42y-6x-11y

= 31y

Do 31y chia hết cho 31.

6x+11y chia hết cho 31 \(\Rightarrow\) 6(x+7y) chia hết cho 31.

Do (6, 31)=1 \(\Rightarrow\) x+7y chia hết cho 31.

Vậy nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.

1 tháng 2 2017

Đặt \(A=6\left(x+7y\right)-\left(6x+11y\right)\)

\(=6x+42y-6x-11y\)

\(=3y\)

Do \(31y⋮31\)

\(6x+11y⋮31\Rightarrow6\left(x+7y\right)⋮31\)

\(6\left(x+7y\right)⋮31\Rightarrow x+7y⋮31\)

Vậy nếu \(6x+11y⋮31\Rightarrow x+7y⋮31\)(Đpcm)

1 tháng 2 2017

6x + 11y ⋮ 31 

<=> 6x + 42y - 31y ⋮ 31

<=> 6(x + 7y) - 31y ⋮ 31

Vì 31y ⋮ 31 . Để 6(x + 7y) - 31y ⋮ 31 <=> 6(x + 7y) ⋮ 31

Mà ( 6;31 ) = 1 => x + 7y ⋮ 31 ( đpcm )

22 tháng 10 2018

a chia  hết cho b => a=k.b, k thuộc Z

b chia hết cho c => b=m.c, m thuộc Z

Suy ra: a=k.b=k.m.c chia hết cho c 

22 tháng 10 2018

\(a⋮b\Rightarrow a=bk\)\(\left(k\inℕ\right)\)\(\left(1\right)\)

\(b⋮c\Rightarrow b=cq\)\(\left(q\inℕ\right)\)\(\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow a=cqk\)

\(\Rightarrow c\inƯ\left(a\right)\)

\(\Rightarrow a⋮c\left(đpcm\right)\)

2 tháng 9 2017

Đặt A = 6x + 3y ;   B = x + 7y

Xét hiệu 6B  - A = 6 . ( x + 7 y ) -  ( 6x + 3y )

                        = 6x + 42y - 6x - 3y

                        = 39y

Chị thấy đến đây chị ko làm đc nữa. Em có chép nhầm đề bài ko vậy . 

2 tháng 9 2017

Chi co the lam lại được không em chưa hiểu?

26 tháng 10 2018

\(M=2+2^2+2^3+...+2^{20}\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(M=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

\(M=2\cdot15+...+2^{17}\cdot15\)

\(M=15\cdot\left(2+...+2^{17}\right)⋮15\left(đpcm\right)\)

26 tháng 10 2018

Ta có ;

 M = 2 + 22+23+....+220

M  = ( 2 + 22+23+2) + ....+ ( 217 + 218 + 219 + 220)

M = 2(1 + 2 + 22 + 23)+....+217(1 + 2 + 22 + 23 )

M = 2 . 15 + .... + 217 . 15

Vì 15 chia hết cho 15

Nên 2. 5 + ...+217 . 15

Vậy nên M chia hết cho 15

27 tháng 12 2015

Số có bốn chữ số tổng quát là  1000.a+b.100+c.10+d . Theo bài a+b+c+d=11 (1)
Cho a+c−b−d: 11=k (k  E Z) (2)
a;b;c;d ≤ 9 => k E {0;1;-1}. Sở dĩ như vậy vì nếu k=2 => (a+c)-(b+d)=22 vô lí ! 
TH1: k=0 => a+c-(b+d)=11.k. (3) 
​Công (1);(3) ta được 2.(a+c)=11.(1+k) => 2.(a+c)=11 => a+c=5,5 vô lí nên loại. 
TH2: k=-1 => 2.(a+c)=11.(1+k)=0 => a=c=0 vô lí nên loại. 
TH3: k=1 . Lấy (1) trừ đi (3) 
​2.(b+d)=11.(1-k) => b=d=0 => nếu a=2 thi c=9 
a=3 => c=8 
a=4 => c=7 
a=5 => c=6 
a=6 => c=5 
a=7 => c=4 
a=8 => c=3 
a=9 => c=2 
Vậy các số cần tìm là: 2090;3080;4070;5060;6050;7040;8030;9020

=> có 8 số có 4 chữ số chia hết cho 11 và tổng các chữ số của nó cũng chia hết cho 11.