Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(z+x\right)\)
\(\Rightarrow\text{ }\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(z+x\right)}{30}\)
\(\Rightarrow\text{ }\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\text{ }\left(1\right)\)
\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\text{ }\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\text{ }\frac{y-z}{5}=\frac{x-y}{4}\)
\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)
\(\Leftrightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}=\frac{x+y-z-x}{\frac{1}{2}-\frac{1}{3}}=\frac{z+x-y-z}{\frac{1}{3}-\frac{1}{5}}\)
\(\Leftrightarrow\frac{y-z}{\frac{1}{2}-\frac{1}{3}}=\frac{x-y}{\frac{1}{3}-\frac{1}{5}}\Rightarrow\frac{y-z}{\frac{1}{6}}=\frac{x-y}{\frac{2}{15}}\)
\(\Rightarrow6\left(y-z\right)=\frac{15\left(x-y\right)}{2}\)
\(\Leftrightarrow2\left(y-z\right)=\frac{5\left(x-y\right)}{2}\)
Nhân cả hai vế với \(\frac{1}{10}\) ta có:
\(\frac{2\left(y-z\right)}{10}=\frac{5\left(x-y\right)}{20}\Leftrightarrow\frac{y-z}{5}=\frac{x-y}{4}\)(ĐPCM)
Bài 1:
\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)
\(\Rightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\left(1\right)\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\left(2\right)\)
Từ (1) và (2) => \(\frac{x-y}{4}=\frac{y-z}{5}\) (đpcm)
Bài 2:
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\left(1\right)\)
Ta lại có: \(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}\left(2\right)\)
Từ (1) và (2) => \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) (đpcm)
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Theo giả thiết suy ra \(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)\(\Rightarrow\)\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{z+x-\left(y+z\right)}{ac-bc}=\frac{x-y}{c\left(a-b\right)}\) (1)
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{y+z-\left(x+y\right)}{bc-ab}=\frac{z-x}{b\left(c-a\right)}\) (2)
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{x+y-\left(z+x\right)}{ab-ac}=\frac{y-z}{a\left(b-c\right)}\) (3)
Từ (1), (2), (3) suy ra \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\) (đpcm).